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A single bacterial enzyme i(NHI)bits
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n this issue of Cell Host & Microbe, Nayeemul Bari et al. discover an anti-phage immune system in bacteria
hat uses a single enzyme to accomplish the challenging feat of detecting phage DNA and limiting its repli-
ation. Unlike CRISPR-Cas and restriction modification (R-M) systems, which use sequence motifs,
uclease-helicase immunity (Nhi) is proposed to target phage-specific replication intermediates.
Bacteria have evolvedmultiple lines of de-

fense in order to protect themselves

against highly abundant and diverse

bacteriophage (phage) populations. In

recent years, there has been a substantial

increase in the discovery of new anti-

phage immune systems (Doron et al.,

2018; Gao et al., 2020), and this has re-es-

tablished the niche of ‘‘bacterial immu-

nology’’ as an essential field in the

broader push for discovery-driven micro-

biology. The best-studied anti-phage im-

mune systems are CRISPR-Cas and re-

striction modification (R-M) systems,

which target phage nucleic acids and

often require multiple components to

curb phage replication (Koonin et al.,

2017; Wilson and Murray, 1991). How-

ever, a study by Nayeemul Bari et al.

(2022) reported in this issue of Cell

Host & Microbe discovers a single

enzyme that is capable of the challenging

feat of recognizing and limiting phage

DNA replication (nuclease-helicase im-

munity [Nhi]). The basis of this discovery

defies the typical mold because it utilizes

a native model organism, Staphylococcus

epidermidis, and a diverse panel of staph-

ylococcal phages. Given the over-
whelming number of phages that exist in

nature and their co-evolution with bacte-

ria, phages serve as powerful molecular

tools for the discovery and characteriza-

tion of bacterial immunity.

The authors initiate their study with an

S. epidermidis strain that harbors

numerous genomic deletions which sur-

round a known ‘‘defense island’’—a

genomic locus that is rich in known anti-

phage immune systems—and they iden-

tify a strain that is uniquely sensitive to

phage compared to its phage-resistant

parent (Figure 1A). Through a series of

complementation tests, a single gene

was identified as necessary and sufficient

for phage resistance. Follow-up experi-

ments meticulously examine each stage

of the phage replication cycle and demon-

strate that Nhi does not inhibit phage

adsorption nor does it induce abortive

cell death (Figure 1B). Upon measuring

phage DNA levels, the authors show that

Nhi limits DNA replication. Analysis of

the Nhi protein reveals that it contains

domains that are derived from an HsdR

Type I R-M endonuclease and an SF1

helicase family. The enzymatic activities

are confirmed through the use of
Cell Host & Microbe
biochemical assays that demonstrate

that the Nhi protein can cleave ssDNA

3’-5’ and nick supercoiled DNA, and that

display helicase activity on dsDNA, which

requires overhangs (Figure 1C). Further-

more, the Nhi enzyme (formerly known

as DUF2075) is widespread in Gram-pos-

itive and -negative bacteria, and it can be

found in defense islands, but it is not very

abundant; these are common signatures

of immune genes. The anti-phage Nhi

enzyme exhibits a distant relationship to

the human proteins Schlafen5 and Schla-

fen13, which have endonuclease-based

antiviral roles and which suggest conser-

vation of immune function.

To understand the activation mecha-

nism that follows phage infection, the au-

thors take advantage of related phages

that display disparate sensitivities to

Nhi. In a serendipitous case of useful

contamination, the authors isolate phages

that appear to escape Nhi immunity, only

to find they have recombined with a

related phage to generate hybrids

(Figure 1D).The authors isolate recombi-

nant phages that pinpoint a single-

stranded DNA binding protein (SSB) as

the key phage-encoded factor that
30, April 13, 2022 ª 2022 Elsevier Inc. 417
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Figure 1. Summary of the work flow and mechanistic model for Nuclease-helicase anti-phage immunity (Nhi)
(A–D) A schematic summarizing the workflow that led to the discovery of Nhi (nuclease-helicase immunity).
(E) A final model for Nhi, which includes phage-encoded single-stranded DNA binding proteins (SSBs) that
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determines sensitivity to Nhi. Specifically,

phages that are sensitive to Nhi encode

truncated SSB proteins, whereas the

gain of Nhi resistance is associated with
418 Cell Host & Microbe 30, April 13, 2022
acquiring or possessing a full-length

SSB. Follow-up experiments with staphy-

lococcal phages from genetically distinct

families converge on the unique N termi-
nus of SSB likely serving as the main

pathogen-associated molecular pattern

(PAMP) of Nhi. In the context of the phage

replication cycle, the authors ultimately

determine whether Nhi targets the phage genome.
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propose a model in which the phage-en-

coded SSB is sensed by Nhi and subse-

quently activates the Nhi enzyme to

selectively degrade phage replication in-

termediates while leaving self-nucleic

acids intact and the host protected from

phage infection (Figure 1E).

Taken together, this study identifies a

single host enzyme that is necessary

and sufficient for anti-phage immunity,

characterizes the dual helicase-nuclease

function of the enzyme, and presents a

uniquemodel for targeting phage-specific

replication intermediates. An emerging

theme in the discovery of new anti-phage

systems has involved numerous exam-

ples of >2 component systems, such as

CBASS, retrons, and Pycsar, that first

recognize a phage infection event and

then are proposed to act on the host to

curb the infection (Cohen et al., 2019; Mill-

man et al., 2020; Tal et al., 2021). Nhi goes

against the grain with an ‘‘old school’’

mechanism that appears to directly

antagonize the phage. The mechanistic

challenge of both recognizing phage-spe-

cific molecules and acting on them in an

inhibitory fashion in a way that does not

appear to be sequence-specific is a sig-

nificant and exceptional finding.

The ‘‘start-to-finish’’ narrative of this

paper can serve as a model for future dis-

coveries in bacterial immunity because it

systemically and cleverly combines

phage/bacterial genetics, bioinformatics,

and reductionist biochemistry. Further-

more, by establishing a native model sys-

tem of Nhi within S. epidermidis bacteria

and its cognate phages, the authors are

able to isolate phages that escape immu-

nity and provide important insights into

the conservation and mechanism of Nhi.

Many open questions remain, of course.

Although the current Nhi model suggests

that phage-specific replication intermedi-

ates is the target and, by extension, is

sensed by the Nhi enzymes, substrates

that mirror these intermediates—com-

plete with SSB proteins that do or do not
license Nhi targeting—are not examined

in vitro in this study. This will certainly be

important to study in future work in order

to solidify or alter the model. In addition,

the authors fortuitously discover that the

N-terminal fragment of the Nhi protein

possesses nuclease activity, but this ac-

tivity is auto-inhibited with the full-length

protein. Whether the enzyme is constitu-

tively in an auto-inhibited state, which is

then activated by phage infection, re-

mains to be seen.

In summary, Nayeemul Bari et al. pro-

vide a comprehensive example of how

investigating the co-evolution of phages

with their native host uncovers a bacterial

immune system that defies the status quo

and utilizes a single-component enzyme

for anti-phage activity. In the broader

scope of the field, this scientific strategy

to ‘‘follow the phage’’ will enable further

discovery and address critical questions

in fundamental phage and bacterial

biology. Of equal importance, our under-

standing of bacterial immune systems,

such as Nhi, can also provide essential

insight into the driving pressures behind

some immune processes found in

humans and the success or failure of

phages in microbial therapeutics. Alto-

gether, this body of work, alongside future

work, will shape our understanding

of bacterial immunology and generate

powerful tools in biotechnology and anti-

microbial applications.
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