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Abstract

Host-pathogen interactions (HPIs) are pivotal in regulating establish-
ment, progression, and outcome of an infection. Affinity-purification
mass spectrometry has become instrumental for the characterization of
HPIs, however the targeted nature of exogenously expressing individual
viral proteins has limited its utility to the analysis of relatively small
pathogens. Here we present the use of co-fractionation mass spectrome-
try (SEC-MS) for the high-throughput analysis of HPIs from native viral
infections of two jumbophages (ϕKZ and ϕPA3) in Pseudomonas aerugi-
nosa. This enabled the detection >6000 unique host-pathogen and >200
pathogen-pathogen interactions for each phage, encompassing >50% of
the phage proteome. Interactome-wide comparison across phages showed
similar perturbed protein interactions suggesting fundamentally con-
served mechanisms of phage predation within the KZ-like phage family.
Prediction of novel ORFs revealed a ϕPA3 complex showing strong struc-
tural and sequence similarity to ϕKZ nvRNAp, suggesting ϕPA3 also
possesses two RNA polymerases acting at different stages of the infection
cycle. We further expanded our understanding on the molecular organiza-
tion of the injected phage proteome by providing 23 novel virion compo-
nents and 5 novel injected proteins, as well as providing the first evidence
for phage manipulation of the host ribosome. To enable accessibility to
this data, we developed PhageMAP, an online resource for network query,
visualization, and interaction prediction http://phagemap.ucsf.edu/. We
anticipate this study will lay the foundation for the application of
co-fractionation mass spectrometry for the scalable profiling of host-
pathogen interactomes and protein complex dynamics upon infection.

Introduction

Protein-protein interactions (PPIs) are the fundamental building blocks of cel-

lular complexity and their perturbation and rewiring has profound effects on

the proteome and cell fate. During an infection, the interactions between host

and pathogen proteome are pivotal in regulating pathogen tropism, infection

progression and, ultimately, infection outcome. Host-pathogen interaction

(HPI) mapping using affinity-purification mass spectrometry (AP-MS) has

been instrumental in identifying host targeted processes[1–5] and, recently, to

predict potential therapeutics targets during the SARS-CoV2 pandemic[6–8].

http://phagemap.ucsf.edu/
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Despite the successes of AP-MS for mapping HPIs, the exogenous expres-

sion and purification of individual pathogen proteins limits our our ability

to characterize HPIs under native expression levels, and quantify how these

interactions are regulated in the context of the full pathogen protein reper-

toire during an infection. The targeted nature of AP-MS also precludes the

detection of downstream rearrangements in protein complexes beyond the

viral protein of interest. Lastly, AP-MS is a labor-intensive process that

requires the generation of numerous plasmids and hundreds or thousands of

individual purifications to comprehensively probe protein-protein interactions

for an entire viral proteome. This limits the scalability of AP-MS for the

characterization HPIs for larger viruses or bacteria which express hundreds or

thousands of proteins.

As a result, small eukaryotic viruses have been prioritized in host-pathogen

interaction studies, thus extensive knowledge on interactions between larger

prokaryotic viruses (bacteriophages) and their host is currently missing. This

class of bacterial viruses hold great potential for treatment of multi-drug resis-

tant bacteria which have increasingly been reported in the last two decades[9].

However, without a thorough understanding on putative interactions and

functions of the phage gene products, it will be challenging to inform the

rational design of the next generation of phage therapeutics.

To bridge this gap, here we have applied co-fractionation mass spectrom-

etry using size-exclusion chromatography, coupled with fast data-independent

acquisition MS (SEC DIA- MS),[10] to generate two phage-bacteria interac-

tomes and to measure host PPI rewiring upon phage infection in Pseudomonas

aeruginosa. Specifically, we provide the first interactome of two KZ-like phages
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(ϕKZ[11] and ϕPA3[12]) which are archetype Jumbophages that possess gigan-

tic genomes (>200 genes), with no known organization of genes by function,

hence lacking synteny. Unique to this family of phages is the presence of a large

proteinaceous shell acting analogous to the eukaryotic nucleus; thus decoupling

transcription from translation. This structure confers resistance to several bac-

terial antiphage systems such as CRISPR[13, 14] and has a fundamental role

in infection establishment[15] and virion egress[16]. Through the prediction

of PPIs using deep learning and structural modeling, we derived system-level

maps of Jumbophage infection encompassing a large fraction of the phage

and bacterial host proteome. These host-pathogen interaction maps substan-

tially extends previous knowledge on Jumbophage predation and, provide

the first application of co-fractionation mass spectrometry for host-pathogen

interaction profiling.

Results

A cross-phage study of viral infection cycle

To understands HPIs that mediate phage infection, we infected Pseudomonas

Aeruginosa (strain PAO1) with either the ϕKZ or ϕPA3 bacteriophage for

60 minutes in biological duplicate. To control for virion protein complexes

(i.e complexes present within the phage itself), parallel experiments were also

performed using a naturally emerging PAO1 mutant (∆fliC )[17] that cannot

be infected (Fig.1A).

Infected cell lysates were then fractionated by size-exclusion chromatography,

and each fraction (n=72) was analyzed using data independent acquisition

MS (DIA-MS) coupled to high-throughput liquid chromatography[18]. To pre-

dict host-pathogen interactions, we used a modified version of the PCprophet
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Fig. 1. High-throughput interaction proteomics for deep host-pathogen
interaction mapping A. SEC-MS workflow and experimental design. B.
Overview of PhageMAP analysis and workflows. C. Recovery of Pseudomonas
proteome by SEC-MS. D. Barplot representing the number of phage proteins
identified. E. Correlation between replicates for all proteins identified in the
experiment (n=4132). F. Fractional distribution of the number of SEC peaks across
the various phages and host.

toolkit[10], where the random forest classifier was replaced with a convolu-

tional neural network that was trained for PPI prediction using > 10 million

interactions from various co-fractionation experiments[19].

Derived host-pathogen interaction networks have been organized into a

user-friendly website, PhageMAP, where users can query proteins of interest

to visualize coelution patterns, interactomes, investigate different assembly

states of the PAO1 proteome upon phage infection, and export their findings

as publication-quality networks or coelution plots (Fig.1B).
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This experimental workflow resulted in the high-throughput and compre-

hensive coverage of both the bacterial and the phage proteomes. Specifically,

we detected 3782 PAO1 proteins, covering 83% of the validated SwissProt

entries for the Pseudomonas pan-proteome, and 67% of the unreviewed entries

(Fig.1B). Likewise, we detected 280 proteins for ϕKZ and 198 proteins for

ϕPA3, covering 75% and 53% of their proteomes, respectively (Fig.1C).

To test the achievable robustness and resolution of our workflow we uti-

lized two benchmarks. First, the robustness of fractionation was assessed by

the Pearson R2 between the two replicates of a given condition. Each condition

showed an average correlation of >0.8 (Fig.1E), indicating high reproducibilty

in both phage infection and SEC fractionation, with most of the SEC-profile

peaks overlapping within 1-2 fractions (<0.250 µL). To test the resolution

achievable with our chromatographic separations, we calculated the number

of SEC peaks per proteins, which is a direct proxy for how many different

complex assemblies a protein participates in. Approximately 45% of the iden-

tified proteins were detected in a single SEC-peak in each condition employed

(Fig1F). While the presence of a single peak can represent detection of only

a monomeric protein, we found the majority of these single-peaks proteins

are not at their predicted monomeric molecular weight (Sup. Fig.S1). This

suggests that the protein complex assembly state of the PAO1 proteome was

preserved during sample preparation and SEC fractionation.
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An high-quality interaction dataset for bacterial protein

complexes
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Fig. 2. Pseudomonas protein complexes identified in the SEC-MS data
A. t-SNE plot for all the P. aeruginosa proteins detected in the ∆fliC experiment.
Color code represents membership in reported protein complexes. Representative
coelutions are showed for the pyruvate dehydrogenase complex (B), Oxoglutarate
dehydrogenase complex (C), AAA protease complex (D), DNA polymerase III (E)
and succinyl-coA synthetase (F). X axis shows the fraction number, while Y axis
indicates the unit-rescaled intensity. The molecular weight (Kda) of the protein
standard mix is represented as additional X axis (top). Line color shows the various
subunits.

Next, we sought to investigate the recovery of known protein complexes by

leveraging the partial conservation of core molecular assemblies between P.

aeruginosa and other bacteria such as E.coli, for which protein complexes are

more extensively annotated[20]. Smaller enzymes such as metabolic enzymes

are usually co-expressed within the same operon[21] and have been reported

to dimerize or multimerize. In line with this, we observed enzymes such as the
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pyruvate dehydrogenase complex (Fig.2B) and the oxoglutarate dehydroge-

nase complex (Fig.2C), which migrated at an estimated MW of ≈ 3.5∗106 Da

(expected MW ≈ 3.75 ∗ 106 Da) and ≈ 2.4 ∗ 106 Da, respectively. It is impor-

tant to point that out that the molecular weight estimation for these large

assemblies is subject to error due to these peaks being outside the external

calibration curve. To achieve MW estimation we included in the calibration

curve a pure SEC-separated 70S ribosome (Supplementary Fig S2).

Our sample preparation also preserved membrane-bound complexes. As exam-

ple, the AAA protease complex, formed by four heaxamers of the AAA

protease (ftsH) and 12 copies of each single-pass membrane proteins (HflK

and HflC)[22], was recovered at high molecular weight in a broad peak as

shown in Fig.2D. The large molecular weight range and sensitivity covered by

our separation approach was also demonstrated in the recovery of more tran-

sient complexes such as the DNA polymerase III (dnaA, dnaE, and dnaQ)

loaded with the γ complex (holA and dnaX) which plays a key role at the

replication fork[23] (Fig.2E). Finally, heterodimeric complexes such as the

succinyl-coA synthetase were also recovered as demonstrated by the coelution

plot in (Fig.2F). Our manual inspections further confirms that prior knowl-

edge can be easily incorporated into SEC-MS data analysis and allows for

straight-forward identification of protein complexes.
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Comparison of host-targeted processes reveals conserved

and divergent predation mechanisms
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After having demonstrated the proteome depth achieved in our SEC-MS

dataset and the recovery of known complexes, we turned our attention to how

Jumbophages re-wire Pseudomonas protein complexes by evaluating differ-

ences in SEC profiles upon phage infection. Variation in SEC profiles between

conditions can arise from differential assembly state (i.e. a protein profile

shifting to higher or lower molecular weight), different stoichiometry within a

complex, or global alterations in protein abundance. To quantify these differ-

ent cases, we employed a previously described Bayesian analysis module from

the PCprophet package[10] to derive marginal likelihoods (SEC differential

score) of protein-level SEC changes between ϕKZ and ϕPA3 versus the recep-

torless infected samples (i.e. ∆fliC ). Comparing the SEC-profile differences

between phage-infected PAO1 and ∆fliC revealed approximately 600 proteins

showing SEC variation upon infection by either phage (Fig.3A). Notably, there

is substantial consistency in which Pseudomonas proteins are altered, and

the degree of change in their individual SEC profiles (Fig.3B, cor = 0.677),

potentially pointing towards common pathways and complexes hijacked by

ϕPA3 and ϕKZ for successful predation. Most of the changes at the assem-

bly state level do not have a corresponding variation in protein abundance

at the global proteome level, suggesting that SEC-MS offers an orthogonal

view on effect of perturbations, such as infection, on the proteome (Fig.3C).

Proteins changing both in assembly state and abundance could be dependent

on deep interactome rewiring rooted in a strong transcriptional response to

phage infection. For example, we identified several quorum sensing proteins

such as lasB, phzB1, and nfxB in ϕKZ and ϕPA3 as proteins changing in both

dimensions (SEC and abundance). To identify conserved KZ-like jumbophage

manipulation of the host interactome, we mapped the SEC-derived PAO1

interaction network (Fig.3D) with the correspondent protein-level differential
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data derived from the comparison between phage and uninfected samples.

Albeit a large portion of the nodes do not have a functional annotation,

we identified several classes where their component were significantly altered

upon Jumbophage phage infection. Several pathways related to drug resistance

(folate biosynthesis KEGG ID pae00790, beta lactam resistance KEGG ID

pae01501, antimicrobial resistance KEGG ID pae01504) were enriched upon

Jumbophage infection (Fig.3E). Moreover, quorum sensing and biofilm for-

mation pathways were enriched in both phage infected samples (q ≤ 0.01)

and several prior studies have highlighted the role of phages in regulating

formation of biofilms[24, 25]. We identified multiple proteins in this category

having significantly decreased abundance in the high molecular weight region

compared to their uninfected counterpart (Fig.3F) which adds further evi-

dence to alteration of quorum sensing as the phenazine system directly triggers

biofilm formation in Pseudomonas[26, 27]. Membrane proteins were partic-

ularly affected by Jumbophage infection with porins and multi-drug efflux

proteins (KEGG pae02010: ABC transporters) displaying significant reduction

in interactions. As example, the MexAB-OprM complex, a key efflux pump[28],

shows almost complete reduction of the fully assembled complex (Fig.3G). It

is important to point out that changes we observed could either be beneficial

for the phage to overcome its host, or an attempt from the host to eliminate

the phage.
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Organization of the ϕKZ like Jumbophages viral

interactome
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and the virion associated RNA-polymerase. G. Mirrorplot illustrating the coelution
of ϕKZ proteins (upper panel) with the 70S ribosome (lower panel). H. Interaction
network for ϕKZ proteins and ribosomal subunits from the SEC XL-MS
experiment. Edges represent an identified crosslink. Dashed line represents a known
ribosomal structural component, node color represents whether a protein is a phage
protein (purple), ribosomal component (red) or another protein class (white)
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The remodeling of host protein complexes can be the result of indirect

rewiring of host cellular processes, or direct interactions with phage proteins.

Thus, we next investigated interactions directly involving phage proteins,

including complexes containing both phage-host and phage-phage interactions.

The two Jumbophages used in this study, ϕKZ and ϕPA3 both have high

sequence similarity[29] and shows high degree of immune evasion from bac-

terial antiphage systems[13, 30]. Following SEC-MS and PPI prediction, we

defined high-confidence interactions as those with a probability score of ≥

0.75. In total, we identified 292 interactions between pairs of ϕKZ viral pro-

teins, and 6550 host-pathogen interactions between ϕKZ and PA01 proteins.

ϕPA3 showed a similar trend with 145 viral-viral and 3979 host-pathogen pro-

tein interactions (Fig.4A). Topological analysis of these networks revealed a

scale-free architecture (Fig.4B), in line with previous reports that SEC-MS

derived networks presents the same architectural features as networks derived

from literature curated studies and large PPI databases[10, 31, 32]. Next, we

evaluated the distribution of predicted PPI (by SEC-MS) in phage infected

PAO1 cells as a function of the genomic separation of their corresponding

genes (Fig.4C,D). Indeed as observed with PAO1 cells infected with ϕKZ, the

predicted PPI are not typically localized to proteins whose genes lie in a sin-

gle/adjacent operon(s) but rather distributed all across the genome (Fig.4D).

When looking at the overall density of PPI between a set of two phage proteins

with respect to the distance of separation (in Kb) of their corresponding genes

(Fig.4C), we observed that for both ϕKZ and ϕPA3, interactions are predicted

between translation products of phage genes separated by distances as large

as 250Kb. For ϕKZ the density displays a bimodal distribution with a sharp

peak at ≈ 22 Kb and a broader peak at ≈ 185 Kb (Fig.4C, purple). Interest-

ingly, for ϕPA3 this distribution is altered, as it shows a greater distribution
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of PPI predicted at lower gene separations (two peaks at ≈ 19 Kb and ≈ 97

Kb), that tapers off at larger gene separations (with a third peak at ≈ 182

Kb) (Fig.4C, yellow). This discrepancy between the two phages is explained

in part by the fact that as compared to ϕKZ, in ϕPA3 partial duplication or

fragmentation of genes into multiple genes within a single/adjacent operon(s)

is frequently observed (see Supplementary Table S1). Overall, the PPI distri-

bution confirms the general lack of synteny within the genomes of ϕKZ-like

jumbophages and shows the SEC-MS approach as a particularly advantageous

technique to query phage encoded complexes at the protein, level agnostic to

the overall genome organization (i.e. a guilt-by-association approach at the

protein level).

The identified interactions allowed us to recapitulate several known

complexes in the Jumbophage proteome, despite a limited number being

described at present. As example, we recovered the non-virion associated RNA-

polymerase[33] migrating at its expected molecular weight (apparent MW 271

KDa or fraction 53, correct MW ≈ 265 kDa) (Fig.4E) as well as the virion

associated RNA polymerase[34] (apparent MW 300 KDa or fraction 52, correct

MW ≈ 297 kDa) ( Fig.4F). Overall, we observed the presence of several phage

peaks groups at high molecular weight in both ϕPA3 and ϕKZ, suggesting the

presence of yet undiscovered phage protein complexes or phage-host interac-

tions (Supplementary Fig.S3). For example, we observed a clear peak group

composed of PHIKZ005, PHIKZ108, PHIKZ285, PHIKZ286, PHIKZ299, and

PHIKZ p51 at approximately 4 MDa. Intriguingly, these proteins were pre-

dicted to be in complex with the fully assembled P. aeruginosa 70S ribosome

as shown in Fig.4G. To validate these ϕKZ proteins as ribosomal interac-

tors, we performed cross-linking mass spectrometry (XL-MS)[35] on a pooled
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sample from the SEC fractions correspondening to the 70S ribosome (Supple-

mentary Fig.2). We identified 975 crosslinks in total (202 hetero-links and 871

homo-links), covering several previously reported protein complexes such as

the ATP synthetase, AAA protease complex, SEC complex D/F and succinyl-

coA synthetase (Supplementary Fig.S4). The XL-MS data encompassed 24 P.

aeruginosa ribosomal proteins (separated in 30S and 50S) of which 3 showed

interaction with 6 ϕKZ proteins. Amongst the identified ϕKZ proteins, we

recovered PHIKZ285, PHIKZ286, and PHIKZ108, which were predicted from

the SEC-MS data to be in complex with the 70S ribosome. Moreover, we

identified PHIKZ p08 and PHIKZ175 as additional ribosomal interactors. All

of these proteins interacted with distinct structural features of the ribosome

as depicted in the interaction network in Fig.4H. PHIKZ286 bound the L1

ribosomal stalk (rplL, rplK, and rplJ ) which has an important role in tRNA

translocation[36] and is the contact site for several translation factors[37].

PHIKZ p08 interacted with rplN bound to its ribosome silencing factor rsfS

which slows down or represses translation[38]. Finally, PHIKZ285, PHIKZ175,

and PHIKZ108 were bound to rpmC which is an accessory proteins positioned

near the exit site and is required for triggering nascent polypeptide folding[39].

It is important to note that, these interactions could either be functional

within the ribosome or represent active translation of the phage proteins. Fur-

ther mechanistic characterization would be needed to determine if such phage

proteins hijack ribosomal function.
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Identification of novel protein-coding sequences by

SEC-MS
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Fig. 5. Identification of novel phage proteins. A-B. CDS plot for ϕKZ and
ϕPA3. Forward CDS are colored in green while reverse CDS are represented in
purple. Identified novel proteins are highlighted in the histogram (inner circle). C.
Scatterplot of protein length vs percentage of sequence coverage in the SEC-MS
experiments. Dot size represents the number of proteotypic peptides identified. D.
Distribution of the identifications (defined as number of independent MS detections
using a 1% peptide spectrum matching FDR) for the novel ϕKZ and ϕPA3
proteins. E. Boxplot showing the Pearson correlation between the two replicates
(n=72). Each novel protein is represented as a dot. The box boundaries show the
interquantile range (IQR) and its whiskers 1.5×IQR. F. Heatmap representing the
elution profile for all the novel ORFs. X axis represents the fraction number while
the cell color shows the unit-rescaled intensity. G. Coelution profile for predicted
nvRNAp in ϕPA3. H. Superimposition of reported structure for the ϕKZ nvRNAp
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The multiplexed nature of DIA allows un-biased sampling of the full precur-

sor space[40], hence we queried our data for the presence of peptides from

novel phage proteins. To achieve this, we employed EMBOSS to build a cus-

tom protein FASTA comprised of predicted novel ORFs, and then extracted

expected peptide fragment ion chromatograms for these novel ORFs from the

DIA data. This resulted in the detection of 4 previously undescribed proteins

for ϕKZ (2 forward and 2 reverse ORFs) and 11 for ϕPA3 ( 8 forward and 3

reverse) (Fig.5A and B). The authenticity of these novel proteins is supported

by the detection of two or more proteotypic peptides for nearly all novel pro-

teins (Fig.5C), as well as the reproducible detection of the same peptides in

15 or more consecutive fractions across independent experiments (Fig.5D). All

novel proteins showed reproducible quantitation between biological duplicate

experiments (n=72 per replicate), with an average peptide-level correlation

of 0.75 for ϕPA3 proteins and 0.82 for ϕKZ proteins (Fig.5E). Most of these

proteins did not migrate at their predicted molecular weight, suggesting their

potential involvement in high-order assembly, with two ϕPA3 proteins eluting

at ≈ 4 MDa (Fig.5F), pointing towards their potential association with large

macromolecular complexes.

Some of the novel ORFs are further supported by a great degree of

sequence overlap with other reported proteins. The most staggering exam-

ple is the identification in ϕPA3 of the reverse sense ORF 56450-58417

which shows >70% sequence similarity with previously reported proteins

from various Pseudomonas spp phages (ϕKZ, Psa21, Phabio, 201ϕ2-1, and

PA1C)(Supplementary Fig. S5A). Interestingly, all proteins showing ≥ 50%

homology to 56450-58417 are previously reported or proposed phage RNA

polymerase components, such as ϕKZ gp74 (non-virion associated RNAp,

UniprotID Q8SD88)[34, 41, 42]. To date, there is no experimental evidence
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of a nvRNAP in ϕPA3. To derive other putative members of this complex,

we extracted the predicted interactors of ORF 56450-58417 and performed

BLASTp analysis to identify proteins showing homology to other Jumbophage

RNA polymerase components. From this analysis, we selected 3 interactors

(gp55, gp63, and the novel ORF 53811-55010) showing >50% conservation

with multiple Jumbophage proteins annotated as RNAP components (Sup-

plementary Fig.S5B-D). Specifically, we identified homologs of both the β1

polymerase subunit (gp55 and ORF 56450-58417), as well as homologs of the

β subunit (ORF 53811-55010). The ϕPA3 protein gp63 displays 57% homology

to ϕKZ gp68, an essential nvRNAp component which lacks structural simi-

larity to know components of previously reported RNA polymerases[41]. By

employing the molecular weight derived from the SEC peak position, we esti-

mated the nvRNAp MW in ϕPA3 being ≈ 321 KDa (Fig.5G). Assuming the

lack of homodimers in the structure, the predicted MW for these four proteins

was ≈ 253 KDa, suggesting a putative missing subunit. Of note, we did not

identify 53811-55010 interactors corresponding to ϕKZ g123, another β subunit

component, which could explain this observation. Nonetheless, to explore the

possibility of these proteins (gp55, gp63, ORF 53811-55010, and ORF 53811-

55010) folding into an RNA polymerase-like assembly we performed structural

prediction of this peak group using AlphaFold2 multimer[43]. We achieved high

prediction confidence, with inter-chain predicted confidence (ipTM + pTM) of

0.82 and low predicted aligned error (PAE) across the entire oligomer (Supple-

mentary Fig.S6). We aligned the best scoring model to the reported structures

for the ϕKZ nvRNAP (PDB 7OGP and 7OGR)[42] as depicted in Fig.5H. We

reached a template modeling (TM) score of 0.503 using US-Align[44] and an

average RMSD of 1.016 Å using MatchMaker[45] between our proposed ϕPA3
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vRNAp and the ϕKZ RNAp (70GR), strongly pointing towards a global ter-

tiary structure similarity between these two assemblies. As we obtained low

distances for the β and β1 subunits, we set to investigate the misaligned region

at the C-term of the polymerase clamp (gp63 in ϕPA3 and gp68 in ϕKZ).

Despite showing high sequence homology (68%), these two proteins share a

large intrinsically disordered region (IDR) in the middle of the sequence (275-

293 aa for gp68 and 277-301 aa gp6) as exemplified in Supplementary Fig.S7)

which gives the central region extreme flexibility hence resulting in a random

orientation for the folded C-term in ϕPA3 gp63 following AlphaFold prediction.
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Discovery and validation of novel injected phage proteins
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Fig. 6. Data-driven analysis of injected inner body proteins A. ROC curve
for virion MS (AUC ≈ 0.94) using as ground truth the prior reported virion
proteins. Green highlight selected threshold for maximimum sensitivity at the
lowest FPR. B. Density plot representing the enrichment of virion proteins over a
whole proteome infection experiment expressed as log2 fold change (X axis).
Different colors represent whether a protein was previously reported as virion
(bordeaux), novel from our virion dataset (green) or non-virion (cream). C.
Sequence logo for the proteins in the IB interaction network. X axis shows the
position from N to C term while Y axis represents conservation in bits. D. SEC-MS
derived interaction network for the reported IB proteins (gp93/95/97). Color code
represents the query protein (aquamarine), abundant virion protein (dark purple)
defined as top 20% most abundant proteins, non abundant virion proteins (grey)
and proteins not identified in the virion MS experiment (green). E. Injection of
phage proteins evaluated by WB of 3x FLAG phage tagged proteins.

Although it is well known that ϕKZ phages guard their genome from

nucleolytic host-immune systems by building a proteinaceous shell[13], this

structure is only visible after 20 minutes of infection. Little is known about

how the phage genome is protected or packaged prior to shell assembly. In
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order to identify phage proteins proximal to the genome (with possible pro-

tective functions), we first set on obtaining an in-depth virion proteome as

this will allow distinction of virion proteins (injected) from newly synthesized

proteins. We performed cesium-gradient purification of ϕKZ coupled with

deep peptide fractionation and long chromatographic acquisition (see Supple-

mentary Methods for details). The 245 ϕKZ proteins identified in this dataset

encompassed ≥ 90% of previously reported head proteins (Supplementary Fig

S.8A). This drastic increase in protein number is dependent on the increase

sensitivity and sequencing speed of the MS utilized for acquisition, the

extensive sample fractionation prior to MS acquisition (see Supplementary

Fig S.8B), as well as possible contamination from the cesium-fractionation.

To account for the latter, we compared our enriched virion sample with the

previously reported virion proteins to derive an ROC curve, which we used to

select an intensity threshold maximizing recall of known virion proteins and

minimizing false positive rate (Fig 6A). Based on this, we selected 81 proteins

in total (58/61 of previously reported), hence adding 23 proteins to the virion

composition. This stringent filtering resulted in the selection of proteins

which are strongly enriched over their corresponding protein abundance in

a non-enriched samples (Fig 6B). As prior work reported extensive gp175-

driven proteolysis of the head and inner body (IB) proteins[46], we performed

a semi-tryptic search on the purified virion data to confirm prior reported

cleavages and potentially identify novel ones. We recovered 63 semi-tryptic

peptides, of which 15 could be mapped to prior data[46] (≈ 40% overlap).

Within our semi-triptic peptides, we identified 20 cleavages corresponding

to the reported IB proteins (gp93/95/97) and 12 mapping to 9 unreported

proteins. Of note, 8 cleavages could be mapped to gp94, gp177, and gp303

(see Supplementary data and Supplementary Fig. S8C). To identify consensus
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sequences within our set of IB interactors we performed motif enrichment

analysis using STREME[47]. In this analysis, we employed as input the

reported IB proteins (gp93/gp95/gp97) and the SEC-MS derived interactors

after filtering using the virion proteome (gp080, gp094, gp177, gp235, gp237,

and gp303). We identified the consensus motif LSxE as enriched (BH-adjusted

p = 6e−5 ) which confirms the previously reported one S/A/G-X-E motif,

while providing additional specificity in the P2 position (Fig6C).

We then queried the ϕKZ interaction network using as input the virion pro-

teome, to identify putative injected proteins (Fig. 6D). Building on this data,

we selected the interactors of the previously reported proteins (gp94, gp153,

gp162, gp163, and gp177) for further validation using our previously reported

assay for evaluating injection[17]. By further lowering the interaction thresh-

olds to all positive predicted interactions (i.e PPI probability ≥ 0.5 instead of

0.75 utilized to select high-confidence interactors), we further identified gp184

as IB interactor and validated it as injected proteins. These experiments, con-

firmed injection of the previously reported IB proteins (gp93, gp95, gp97) and

furthermore validated the injection of all their interactors as showcased in Fig.

6E. Prior assignment of IB proteins was based on an arbitrary cutoff[46]. Here

by using more sensitive MS of the virion combined with SEC-MS, we identify

a full new set of proteins that are highly abundant, found in the virion, inter-

act with the previously reported IB proteins and herein we validate injection

of 8 proteins (3 previously reported). Overall, these proteins give us a start-

ing point to unravel the interactome of the ejected phage genome and identify

proteins that protect the genome from host nucleases.
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Discussion

Understanding host and pathogen interactions and their dynamics upon infec-

tion is a crucial component to deepening our knowledge on the mechanisms

regulating infection progression and outcome. To date most proteomics studies

of infectious diseases focused on the analysis a few pathogen proteins by tag

or antibody-based purification or the measurement of protein abundance vari-

ation in infected samples. Yet, it is widely known that the pathogen proteome

works in ensemble through protein-protein interactions to hijack the host cell

which in turn regulates both expression and interaction between host proteins.

Hence, a system-wide view on the intrinsic modularity of the pathogen pro-

teome and how it quantitatively regulates host complexes is key to understand

pathogenic mechanisms at the molecular level.

In this study we demonstrate the first application of SEC-MS to system-

atically investigate pathogen proteome organization and host interactome

plasticity upon Jumbophages infection in P. aeruginosa. KZ-like phages

(specifically ϕKZ and ϕPA3) are potent killers of P. aeruginosa (with a broad

host range), making them timely alternatives to antibiotics with many KZ-

like phages already in clinical trials to treat bacterial infections. By obtaining

an atlas of these phages interactomes, we can start to shed light into the

mechanism of action of these phages in diverse aspects of their infection cycle

(e.g. takeover of host translational apparatus, phage replication, host genome

degradation or host lysis).

Our KZ-like phages interactomes offer evidence for the subdivision of Jum-

bophage proteomes into distinct assemblies such as virion and non-virion

associated RNA polymerases as well as interactions of pathogen proteins with

key host complexes like the ribosomal stem and ribosomal silencing factors.
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Moreover, while the lack of immediate genome organization hinders the pre-

diction of functions for phage proteins, the deep coverage and unbiased nature

of SEC-MS data offers a straightforward approach to identify novel complexes

and propose putative functions. As example, by using SEC-derived interac-

tors of a de-novo predicted ϕPA3 protein (ORF 56450-58417), we identified an

heterotetrameric assembly which we demonstrated bearing strong structural

similarity to the reported nvRNAP in ϕKZ. This suggests that the unbiased

nature of SEC-MS data allows to not only to identify uncharacterized, novel

proteins, but also to probe their putative function through their interactions

in a structurally defined complex that could be further investigated with struc-

tural biology approaches. Beside identification of interactions, these maps offer

the opportunity to further quantify host interactome remodelling and dis-

entangle variation in expression from assembly state. By comparing the P.

aeruginosa interactome between infected and uninfected, we observed a large

degree of changes during infection, with perturbation of similar complexes

between the two jumbophages suggesting conserved mechanisms of phage pre-

dation. While we provided a first draft of the KZ-like jumbophage interactome

it is important to point out the trade-off between specificity and through-

put in interaction identification, which we tried to mitigate by utilizing only

high-confidence interactions for analysis. Advances in deep learning models for

prediction of interactions from co-fractionation mass spectrometry data and

integration of orthogonal features (beside the coelution itself) such as pre-

dicted structure or function is expected to improve prediction accuracy and

reduce false discovery rate for uncharacterized proteomes. Overall, the char-

acterization of host-pathogen molecular networks remains challenging, but we

provided the first interactome-wide study of infection progression using two

models ϕKZ-like phages in Pseudomonas aeruginosa.
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Wider application of SEC-MS is expected to significantly accelerate

the characterization of pathogenic mechanisms by providing proteome-wide

insights into the physical association between host and pathogen complexes,

thus enabling identification of novel druggable targets, host vulnerabilities, or

guidance in the development of novel biologicals.

Data availability

The supporting MS data is available via ProteomeXchange with the iden-

tifier PXDXXXX. Novel ϕPA3 and ϕKZ proteins have been submitted to

UniProt. All the code to reproduce the plots as well as the intermediate

data and Alphafold2 predicted structures are available on GitHub at https:

//github.com/anfoss/Phage data.
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Supplementary figures
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Supplementary Fig. S 1. Violin plot showing the distance between the observed
protein SEC peak and their predicted molecular weight expressed as fraction
number for the single-peak proteins. Black line represents the mean.
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Supplementary Fig. S 3. Distribution of the KZ-like phages proteomes
into discrete assemblies A-B. Coelution heatmap for all the phage proteins
identified in ϕKZ (A) and ϕPA3 (B). The dendrogram branches are labelled based
on manual literature curation for the corresponding proteins in the peak group.
Color represents the unit-rescaled intensity. X axis represent the fraction number.
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Supplementary Fig. S 5. Alignment of ϕPA3 56450-58417 interactors
with other Jumbophage proteins A-D. Barplot showcasing the sequence
homology between ORF 56450-58417 (A), gp55 (B), gp63 (C) and gp207 (D) to
other Pseudomonas phages protein. ϕPA3 proteins are highlighted in green. Y axis
shows the percentage of sequence homology.
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Supplementary Fig. S 7. Intrinsically disordered region in ϕKZ gp68 and
ϕPA3 gp63 Prediction of disordered regions using flDPnn[48]. X axis represent
sequence, while different rows shows different local predicted properties between
ϕKZ gp68 (A) and ϕPA3 gp63 (B)
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Supplementary tables

Table 1. Gene duplication in ϕKZ-like
Jumbophages

ϕKZ gene ϕPA3 gene Virion protein

PHIKZ083 AVT69 gp236, AVT69 gp079, AVT69 gp081 YES
PHIKZ093 AVT69 gp097, AVT69 gp099 YES
PHIKZ094 AVT69 gp096, AVT69 gp097, AVT69 gp098 YES
PHIKZ118 AVT69 gp130, AVT69 gp132 NO
PHIKZ131 AVT69 148, AVT69 149 NO
PHIKZ133 AVT69 gp150, AVT69 gp152 NO
PHIKZ134 AVT69 gp150, AVT69 gp151, AVT69 gp152 NO
PHIKZ135 AVT69 gp150, AVT69 gp151, AVT69 gp152 NO
PHIKZ144 AVT69 gp161, AVT69 gp211 YES
PHIKZ145 AVT69 gp162, AVT69 gp163 YES
PHIKZ146 AVT69 gp164, AVT69 gp165, AVT69 gp167 YES
PHIKZ178 AVT69 gp207, AVT69 gp209 YES
PHIKZ179 AVT69 gp131, AVT69 gp208 NO
PHIKZ184 AVT69 gp215, AVT69 gp095 YES
PHIKZ209 AVT69 gp245, AVT69 gp251 NO

Material and methods

Cloning

All plasmids and primers used in this study are listed in the Supplementary

Information. PAO1 cells were transformed with pHERD30T constructs using

electroporation.

Bacterial culture and cloning

Pseudomonas aeruginosa strains PAO1 (WT or ∆fliC) were grown overnight

in 3 mL LB at 37°C with aeration at 175 rpm. Cells were diluted 1:100 from

a saturated overnight culture into 100 mL LB with 10mM MgSO4 and grown

for ≈ 2.5 hours at 37°C with aeration at 175 rpm. At OD600nm = 0.5-0.6

(≈ 3e8 CFU/mL), the cell cultures were infected with bacteriophage (ϕKZ or



1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564

34

ϕPA3; MOI ≈ 1) on ice for 10 minutes (to allow complete adsorption of virions

onto cells) and then incubated at 30°C for 50 minutes (total time of infection

60 minutes). Thereafter, the cell cultures were transferred to pre-chilled 50

mL falcon tubes, centrifuged at 6000xg, 0°C for 5 minutes. The supernatant

was discarded and cell pellets were washed twice with 5 mL ice-cold LB and

combined. After the final wash, the bacterial pellets were resuspended in 5 mL

ice-cold LB. The concentrated cell culture was flash frozen in liquid nitrogen

and subsequently mechanically lysed using a SPEX-freezer mill.

Cesium gradient purification of phage virions

Bacteriophages (ϕKZ or ϕPA3) were propagated in LB at 37°C with PAO1 as

a host. Liquid growth curve experiments were used to ascertain the MOI of

bacteriophage stock needed to ensure complete lysis of the bacteria following

a substantial growth as ascertained by OD600 measurement. Growth curve

experiments were carried out in a Synergy H1 micro-plate reader (BioTek,

with Gen5 software). Cells were diluted 1:100 from a saturated overnight cul-

ture with 10 mM MgSO4. Diluted culture (140 µl) was added together with

10 µl of 10X serial dilutions of bacteriophage stocks to wells in a 96-well plate.

This plate was cultured with maximum double orbital rotation at 37°C for

24 h with OD600 nm measurements every 5 minutes. Thereafter, the bacte-

riophage stock was added at the appropriate MOI to a 1:100 back-dilution of

a saturated PAO1 overnight culture in 100 mL LB with 10mM MgSO4 and

the bacterial culture incubated for 24 hours (37°C with aeration, 175 rpm). 5

mL of chloroform was added to the cultures in a fume-hood and the cultures

were incubated to with chloroform for 15 minutes (37°C, 175 rpm) to ensure

maximum lysis of bacterial cells. The cell cultures were transferred to 50 mL

falcon tubes and centrifuged at 6000 xg for 15 min to pellet bacterial debris.
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The supernatant (containing bacteriophages in high titer) was carefully trans-

ferred to a fresh set of 50mL falcon tubes and centrifuged and 6000xg for 15

min to pellet any residual bacterial debris. The supernatant was transferred to

fresh 50 mL falcon tubes with 2 mL chloroform. To obtain high purity virion

particles, a previously described protocol was followed[50]. The virions from

the bacterial cell lysate were concentrated by slow stirring overnight at 4°C

in 1 M NaCl and 10% PEG (final concentration) and then pelleted (11’300xg,

4°C, 30 min). Pellets were resuspended in 20 ml of SM buffer (50 mM Tris-HCl

(pH 7.5), 100 mM NaCl, 8 mM MgSO4, 0.002% gelatin) containing Complete

Protease Inhibitor (Roche). The phage suspension (5.8 mL/tube) were layered

onto CsCl step gradients composed of the following concentrations of CsCl:

1.59 g/ml (0.75 ml), 1.52 g/ml (0.75 ml), 1.41 g/ml (1.2 ml), 1.30 g/ml (1.5

ml) and 1.21 g/ml (1.8 ml). The buffer used throughout the gradient was 10

mM Tris-HCl (pH 7.5) and 1 mM MgCl2. Tubes were spun at 31,000 rpm

for 3h at 10°C in an SW41 rotor (Beckman Coulter ultracentrifuge) and the

resulting phage band had a buoyant density of 1.36 g/ml. This fraction was

collected and dialyzed against three changes of 50 mM Tris-HCl and 10 mM

MgCl2 at 4°C. This ultra-purified phage stock was diluted in SM buffer and its

titer assessed using plaque assays. Finally, the phage virion stock was acetone

precipitated using 8 volumes of ice-cold acetone.

Bacterial infection and SEC sample preparation

Cryomilled samples were resuspended in ≈ 4 ml of SEC running buffer (50 mM

ammonium bicarbonate and 150 mM NaCl pH 7.4) supplemented with pro-

tease inhibitors (Roche) and ultracentrifuged at 60’000 g for x minutes at 4°C.

The supernatant was concentrated to 100 µL using a 100 KDa molecular weight

cutoff filters to simultaneously enrich for high-molecular weight assemblies and
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deplete monomeric proteins. The concentrated sample was centrifuged once

more at 10’000 g at 4°C to remove particles.

Size-exclusion chromatography

Approx 1000 µg per sample (≈ 80 − 90µL as estimated by Bradford’s assay)

were separated on a Agilent Infinity 1260 HPLC operating at 0.5 mL/minute

in SEC running buffer with a Phenomenenex SRT-C1000 column connected

and cooled at 4 °C. 72 fractions of 125 ul were collected after 3.75 ml until 13

ml and the column was then washed with 2 column volumes (18 mL) of SEC

buffer. The MW was estimated using a protein mixture (Phenomenex AL0-

3042), while a E.Coli 70s ribosome (NEB, cat nr P0763S) was used to estimate

which fractions to use for ribosome XL-MS.

SEC-MS proteomics sample preparation

The SEC samples were prepared as we previously reported[51] using a 96 well

filter-aided sample preparation (FASP). The FASP-filters were conditioned by

washing twice with 100 µL of ddH20. SEC buffer was removed by centrifuga-

tion (1800 g 1 h) and proteins were resuspended in 50 µL of TUA buffer (TCEP

5 mM, Urea 8M, 20 mM ammonium bicarbonate) and incubated on a thermos

shaker (37°C, 400 rpm) for 30 minutes. Cysteine residues were then alkylated

by addition of 20 µL CAA buffer (Chloroacetamide 35 mM, 20 mM ammo-

nium bicarbonate) for 1 h at 25°C in the dark. TCEP and IAA were removed

by centrifugation (1800 g, 30 min) and filters were washed 3 times with 100 µL

of 20 mM ammonium bicarbonate. Proteins were digested in 50 µL of 20 mM

ammonium bicarbonate with 1 µg of tryspin per fraction. A 96 well receiver

plate (Nucleon, Thermo-Fisher) was used to collect the peptides by centrifu-

gation for 30 minutes at 1800g. The filter plates were washed once with 100 µL
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of ddH2O and centrifuged to dryness (1800g, 60 minutes). The peptides from

the receiver plate were transferred to protein LoBind tubes (Eppendorf) and

the corresponding well was washed with 50 µL of 50% acetonitrile (ACN) in

ddH20 to increase the recovery of hydrophobic peptides. The combined result-

ing peptides per each fraction were vacuum dried and stored at -80 C until

MS-acquisition. For each phage, 5 µL from each fraction were pooled together

to generate a phage-specific library. Each sample specific library was prepared

on a C18 spin column (Nest). Following activation of the column with 1 col-

umn volume (CV) 100% ACN and wash with 2 CV of 0.1% formic acid the

peptides were bound to the column and eluted using a step-wise gradient of

ACN from 5 to 25 (5% increases) in 0.1% triethylamine to account for the

increased hydrophobicity of the XL peptides compared to not modified ones.

A final fraction at 80% ACN was added to recover hydrophobic peptides.

Proteomics sample preparation for virion enriched

protein pellets

Dried proteins were resuspended in 100 µL of 8M urea, 100 mM ammonium

bicarbonate (ABC) pH 8.1. TCEP (Thermo Fisher) was added to 5 mM final

concentration and the samples were incubated at room temperature for 30

minutes. Reduced cysteines were alkylated with 10mM chloroacetamide (CAA)

for 30 minutes in the dark. Following alkylation, the urea was diluted to 1 M

with 100 mM ABC and the proteins were digested with 2 µg of trypsin per

sample for 14 hrs at 37°C in a thermo-shaker (600 rpm). Digestion was stopped

by acidification using 10% formic acid (FA) and the samples were desalted

using a C18 spin column (Nest group). Briefly, columns were activated using

1 column volume (CV) of ACN and then equilibrated with 2 CV of 0.1% FA.

Peptides were loaded twice and then washed with 3 CV of 0.1% FA. Elution
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was done using 0.5 CV of 50% ACN 0.1% FA and repeated twice. Samples

were dried under vacuum and stored at -80°C until acquisition.

Crosslinking MS sample preparation

ϕKZ infection and SEC-separation were performed as described above. Fol-

lowing separation, the SEC-fractions corresponding to the 70S ribosome peak

(F33-F38) were pooled. The was crosslinked for 1 hr at RT using 5 mM DSSO

from a freshly prepared 30 mM stock in water-free DMF. The reaction was

quenched by addition of ABC to 50 mM for 30 minutes at RT and the pro-

teins were precipitated using 8 volumes of ice-cold acetone. Following overnight

incubation, pellets were washed 5 times with 8x volumes of ice-cold acetone

and briefly dried under vacuum. The pools were reconstituted in 8M urea, 100

mM ABC and 5 mM TCEP and incubated for 30 minutes at RT. CAA was

added to 10 mM final concentration and the samples were incubated in the

dark for 1 hr. Urea was diluted to 1 M by addition of 100 mM ABC and the

proteins were digested overnight with 2 ug of trypsin in a thermo shaker at 30

°C. Samples were acidified with 10% TFA and high-ph tip fractionation was

performed as we previously described[51]. Briefly, following activation, equili-

bration and washing of the C18 resin, the elution was done using a step-wise

gradient of ACN from 10 to 40 (5% increases) in 0.1% triethylamine to account

for the increased hydrophobicity of the XL peptides compared to not modified

ones. Resulting fractions were dried under vacuum.

SEC-MS and spectral library acquisition

Samples were resuspended in buffer A (0.1% FA) and approximately 200 ng

were analyzed by DIA-PASEF on a Bruker TimsTOFpro interfaced with a
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Ultimate3000 UHPLC. For the SEC-MS experiment, the peptides were sepa-

rated on a PepSep column (15 cm, 150 um IID) using a 38-minute gradient at

0.6 µl/min. Following loading, the peptides were eluted in 20 minutes with a

5% to 30% B (0.1% FA in ACN) in 20 minutes. The column was then washed

for 5 minutes at 90% and high flow (1 µl/min) and re-equilibrated at 5% ACN

for the next run. The peptides were sprayed through a 20 mm ZDV emitter

kept at 1700 V and 200 °C. The mass spectrometer was operated in positive

mode using DIA-PASEF acquisition[52]. Briefly, 4 PASEF scans (0.85 1/K0 to

1.30 1/K0) were acquired and divided each precursor range into 24 windows

of 32 Da (500.7502 – 966.67502 m/z) overlapping 1 Da. Each of the fraction-

ated samples (phage-specific libraries) was acquired in DDA-PASEF using a

similar gradient composition except for the elution which was performed in 90

minutes leading to a 120 minute gradient. For DDA-PASEF the ion mobility

window and precursor range were matched to the DIA boundaries to allow for

seamless library building and search.

XL-MS data acquisition

The XL-MS samples were acquired on a Bruker TimsTOFpro interfaced with

a Ultimate3000 UHPLC. The peptides were separated using a 118 minutes lin-

ear gradient. Following loading, the percentage of B (80% ACN in 0.1% FA)

was increased from 2% to 8% in 5 minutes and then to 43% in 90 minutes.

Residual peptides were eluted at 50%B for 10 minutes and then the column

was washed at 88% B for the remaining 13 minutes. The peptides were sepa-

rated on a PepSep column (15 cm, 150 mm iid, 1.9 µm beads size). The mass

spectrometer was operated in positive mode and data-dependent acquisition

with the same source parameters as the SEC fractionated samples. To enrich

for crosslinked peptides a custom IM polygon was employed[53] and charge
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inclusion was enabled (3+ to8+ precursors). Precursors having nominal inten-

sity above 20’000 were selected for fragmentation using an inverted collision

energy of 23 eV at 0.73 1/k0 and 95 eV at 1.6 1/k0.

SEC-MS data analysis

The DDA files were searched within the Fragpipe framework using

MSfragger[54] and the ’DIA-speclib-quant’ workflow using the Pseudomonas

aeruginosa pan proteome FASTA (5564 entries, proteome ID UP000002438,

downloaded on the 05/22). For each phage, the correspondent FASTA

nucleotide file was downloaded from GenBank (NC 004629.1 for ϕKZ and

NC 028999.1 for ϕPA3) and EMBOSS was used for novel ORFs prediction

(see ’Prediction of novel ORFs’ section for details). The GenBank files were

translated to protein level using BioPython and supplemented to the Pseu-

domonas FASTA. Carbamylation of cysteines was set as fixed modification

while oxidation of methionine, N-term acetylation (peptide level) and pyro-

glu formation were set as variable modifications. EasyPQP (https://github.

com/grosenberger/easypqp) was used to generate a spectral library. Follow-

ing phage-specific library generation, PAO1 precursors from all libraries were

transferred to ensure the presence of the same PAO1 proteins with the same

peptides across all DIA experiments using lowess for RT realignment. The

DIA-PASEF data was searched with DIA-NN[55] v.1.7.1 using a library-centric

approach. Identified spectrum with MS1 precursors within 10 ppm and MS2

precursor within 15 ppm were selected and a second library was generated

(double-pass mode). Quantification was set to robust (high-accuracy) and

cross-run normalization was disabled.

https://github.com/grosenberger/easypqp
https://github.com/grosenberger/easypqp
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XL-MS data analysis

XL-MS timsTOF files were converted to mgf using MSconvert. MS1 peak pick-

ing was enabled and the spectrum were denoised (top30 peaks in 100 m/z

bins). Ion mobility scans were combined. Following the conversion, the peak

files were searched in XiSearch[56] using a fraction-specific FASTA containing

only the protein ids identified by SEC-MS in the corresponding MW range.

MS1 and MS2 tolerances were fixed to 10 and 15 ppm with 10 ppm of pep-

tide tolerance. DSSO was selected as crosslinker (158.0037648 Da) and the

correspondent oxidized and amidated crosslinker were added as modifications.

Link-FDR was fixed at 5% (boosted) and the resulting file were imported into

XiView (https://xiview.org) for manual inspection of crosslinked spectrums.

Data analysis for DDA purified virion samples

TimsTOF DDA files were searched in MSfragger using the LFQ-MBR work-

flow. Cysteine carbamylation was selected as fixed modification while N-term

acetylation and deamidation were enabled as variable modification with a

max of 3 variable modifications per peptide. Peptides of length 7 to 50 were

searched again a database of phage, Pseudomonas aeruginosa plus contam-

inants. Decoys were generated by pseudo-inversion. Percolator was used for

FDR-control at 1% PSM.

Protein-protein interaction prediction from SEC-MS data

DIA-NN report were filtered at 1% library Q-value and, to infer protein

quantities, the top2 peptides yielding the highest intra-protein correlation

were averaged (sibling peptide correlation strategy). This step was performed

across all samples to ensure the same peptides were used for every replicate

and condition. The raw MS2 profiles were smoothed using a Savitzky-Golay

https://xiview.org
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filter and rescaled in a 0-1 range. A dot product matrix between all pro-

teins was calculated and protein showing r2 ≥ 0.3 were selected as putative

interactors for prediction. For every pair we calculated 5 features: (i) slid-

ing window (q=6) correlation, (ii) fraction-wide intensity difference, (iii) peak

shift, (iv) Euclidean distance and (v) contrast angle dot-product.

For prediction, we utilized a fully-connected neural network implemented

in Tensorflow (https://www.tensorflow.org). Briefly, we set the input layer as

number of features (147) followed by a fully connected layer with 100 neurons

and a dropout layer (0.2 %) and a fully connected layer with 72 neurons. A final

output layer using sigmoid as activation function was used for classifying co-

eluting and not-coeluting proteins. For training, a previously reported dataset

was used[31]. To select for positive we utilized protein pairs in STRING using a

combined score of 0.9 and experimental evidence, while negative were randomly

selected. The DNN model was trained for 100 epochs using ADAM (learn-

ing rate = 0.001) and binary cross-entropy as loss function. Early stopping

(patience = 20) to avoid overfitting. To further removed spuriously co-eluting

PPIs after the prediction step, we calculated an equal number of decoy PPIs

by randomly sampling the remaining proteins and utilized the DNN model to

predict their coelution probability. We then utilized these two distributions to

perform target-decoy competition (TDC) using posterior probabilities.

ORFs prediction from nucleotide FASTA

EMBOSS v6.6.0.0 subroutine getorf was used to predict open reading frames

(ORFs) with a minimum size of 50 AA. Existing annotated genes were removed

from the predicted ORFs using bedtools subroutine subtract, allowing us to

differentiate between existing and novel ORFs.

https://www.tensorflow.org
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Structural prediction and alignment for ϕPA3 vRNAp

Protein complex prediction was performed using AlphaFold 2 (https://github.

com/deepmind/alphafold). AF2 was run with full database size and the multi-

mer preset. OpenMM energy minimization was performed to generate relaxed

models and 5 models per complex were generated. Models were ranked by

ipTM + TM and the PAE and LDDT were extracted for visualization. Each

complex was submitted as a FASTA file, with proteins ordered from the longest

to the shortest sequence. The alignment was performed using US-Align[44]

(https://zhanggroup.org/US-align/) and the oligomer option was selected.

Alignments of predicted complex structures (ϕKZ vRNAp and 4 proteins ϕPA3

vRNAp) were performed by multiple structure alignment (MSTA) using US-

align with default parameters and a TM-cutoff of 0.45 was used to estimate

topological similarities between the two structures. For visualization purposes,

the structure of vRNAp (70GR) without PHIKZ123, which lacked homologs

identification in ϕPA3, was used as template in MatchMaker.

Generation of ϕKZ particles packaged with 3xFLAG

fusions of ϕKZ virion proteins.

ϕKZ particles packaged with virion proteins bearing a C-terminal 3xFLAG-

tag were generated by adapting a protocol used to generate ϕKZ particles

packaged with mNeonGreen-tagged inner body proteins[17, 57] . PAO1 cells

transformed with the appropriate pHERD30T−(PHIKZxxx)−3xFLAG con-

struct were grown overnight in 3 mL LB supplemented with gentamicin (50

µg/ml) at 37°C with aeration at 175 rpm. Cells were diluted 1:100 from a

saturated overnight culture into 5mL LB supplemented with MgSO4 (10mM)

and Gentamicin (50 µg/ml) and grown for ≈ 2.5 hours at 37°C with aeration

at 175 rpm. At OD600nm = 0.5-0.6 ( 3E8 CFU/mL), the bacterial cultures

https://github.com/deepmind/alphafold
https://github.com/deepmind/alphafold
https://zhanggroup.org/US-align/
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were infected with ϕKZ (WT, MOI ≈ 1) for 2.5 hours. Thereafter 1 mL of

chloroform was added to the cultures in a fume-hood and the cultures were

incubated to with chloroform for 15 minutes (37°C, 175 rpm) The cell cul-

tures were transferred to 15 mL falcon tubes and centrifuged at 6000xg for

15 min to pellet bacterial debris. The supernatant (containing bacteriophages

in high titer) was carefully transferred to a fresh set of 50mL falcon tubes

and centrifuged and 6000xg for 15 min to pellet any residual bacterial debris.

Thereafter, 4 mL the supernatant was filtered and concentrated (≈10x) using

Amicon-100 centrifugal filters to remove excess 3xFLAG-tagged proteins. The

concentrated supernatant was used for western blot experiments.

Western blot and blot analysis

PA01 cells were grown as previously described and upon reaching 0.5 OD (600

nm), gentamicin was added (50 µg/ml) and the celles were chilled on ice for 5

minutes to stall translation. Thereafter PAO1 cells (≈1 OD equivalent) were

infected with ϕKZ particles packaged with virion proteins bearing a C-terminal

3xFLAG-tag (MOI ≈ 1) on ice for 10 minutes (to allow complete adsorption

of virions onto cells) and then incubated at 30℃ for 15 minutes. Thereafter,

the cell cultures were transferred to pre-chilled 15mL falcon tubes, centrifuged

at 6000xg, 0°C for 5 minutes. The supernatant was discarded and the cell

pellet was washed twice with 2 mL of pre-chilled (0°C) LB to remove excess

unbound virions. The cell pellet was lysed in 100 µL of lysis buffer (20 mM

Tris, pH 7.5, 150 mM NaCl, 2% glycerol, 1% TTX-100, CompleteMini EDTA-

free protease inhibitor cocktail). The lysed suspension was further sonicated

on ice using a Q125 sonicator (10 pulses, 1s ON, 1s OFF, 30% amplitude). The

cell lysate was centrifuged at 15000xg (15min, 0°C) to remove cellular debris.

The clarified cellular lysate (100 µL) was boiled with 33 µLL of 4X Laemmli
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Buffer (with Beta-mercaptoethanol) for 10 min. 14 µLL of lysate samples was

loaded. For virion control samples, 10 µLL of purified virions were boiled with

3.3 µLL of 4X Laemmli Buffer (with Beta-mercaptoethanol) for 10 min and

2 µLL of samples were loaded. SDS-PAGE gels were run with running buffer

(100 mL 10X Tris-Glycine SDS Buffer, 900 mL Milli-Q water) at 130V for 1

hour (constant voltage setting). The SDS-PAGE gels were transferred onto 0.2

µM PVDF membranes using a wet transfer (Transfer Buffer: 100 mL 10X Tris-

Glycine Buffer, 200 mL methanol, 700 mL Milli-Q water; 100V, 1 hour, 4°C).

The membranes were incubated with blocking buffer (5% Omniblock milk, non

fat-dry in 1X TBST (200 mL Tris Buffer Saline, 0.20 mL Tween-20)) for 1

hour at room temperature. Thereafter the blocking buffer was discarded and

the membranes were incubated with 1:1000 dilutions of mouse anti-FLAG M2

antibody (Sigma-Aldrich) in 1X TBST (overnight, 4°C, with constant shak-

ing). Thereafter the membranes were washed thrice for 10 min with TBST and

incubated with 1:3000 dilution of Goat anti-mouse HRP (Thermo Fischer) in

blocking buffer for 1 hour at room temperature with constant shaking. Finally,

the membranes were washed thrice for 10 min with TBST and incubated with

Clarity Western ECL substrate. Membranes were imaged on an Azure 500

imager.
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[36] Réblová, K., Sponer, J. & Lankas, F. Structure and mechanical proper-

ties of the ribosomal L1 stalk three-way junction. Nucleic acids research

40 (13), 6290–6303 (2012). https://doi.org/10.1093/nar/gks258 .

[37] Maruyama, K. et al. Switch of the interactions between the ribo-

somal stalk and EF1A in the GTP- and GDP-bound conformations.

Scientific Reports 9 (1), 14761 (2019). URL https://doi.org/10.1038/

s41598-019-51266-x. https://doi.org/10.1038/s41598-019-51266-x .
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