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Due to recent discovery efforts, over 100 immune systems
encoded by bacteria that antagonize bacteriophage (phage)
replication have been uncovered. These systems employ direct
and indirect mechanisms to detect phage infection and activate
bacterial immunity. The most well-studied mechanisms are
direct detection and activation by phage-associated molecular
patterns (PhAMPs), such as phage DNA and RNA sequences,
and expressed phage proteins that directly activate abortive
infection systems. Phage effectors may also inhibit host
processes and, therefore, indirectly activate immunity. Here, we
discuss our current understanding of these protein PhAMPs
and effectors expressed during various stages of the phage life
cycle that activate immunity. Immune activators are
predominantly identified from genetic approaches that isolate
phage mutants that escape a bacterial immune system,
coupled with biochemical validation. Although the mechanism
of phage-mediated activation remains uncertain for most
systems, it has become clear that each stage of the phage life
cycle has the potential to induce a bacterial immune response.
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Introduction

Anti-phage bacterial immune system discovery efforts
have accelerated in the past five years alone [1-6], yet
the mechanisms of immune activation are largely

unaddressed. Notably, several anti-phage systems are
evolutionarily conserved in eukaryotic anti-viral innate
immune pathways through related structures and func-
tions of core immune proteins [7-15], suggesting that
mechanisms of immune activation may also be con-
served. In eukaryotic cells, viruses directly or indirectly
activate innate immunity. Viruses harbor conserved
features, referred to as pathogen-associated molecular
patterns (PAMPs), that directly bind to the host’s cog-
nate pattern recognition receptor and then activate an
immune response [16]. By contrast, viruses may produce
an effector (typically a protein) that manipulates host
cell structures or processes, which activates immunity
[17]. Although wviral effectors are diverse and rapidly
evolving — making them ‘bad’ PAMPs — the manipu-
lated host structures or processes are widely conserved.
These two strategies of immune activation are not mu-
tually exclusive and ensure that host cells can respond to
numerous, variable ‘patterns of pathogenesis’ [17,18].

In bacteria, there is evidence of both direct and indirect
activation mechanisms in response to phage infection akin
to those observed in eukaryotic anti-viral innate immunity.
We define these mechanisms of phage-mediated activation
as (1) detection of phage-associated molecular patterns
(PhAMPs) that directly activate bacterial immunity, and
(i1) detection of phage-associated effector activities that
indirectly activate bacterial immunity. Well-studied ex-
amples of PhAMPs include phage DNA and RNA se-
quences, which directly activate Clustered regularly
interspaced short palindromic repeats (CRISPR)-Cas [19]
or restriction-modification (RM) systems [20]. Numerous
phage proteins or protein complexes have also been dis-
covered to directly activate bacterial immune systems,
which tend to be abortive infection (Abi) or cell death
systems [7,12,14,21-23]. In parallel, phage proteins that
inhibit conserved host processes, such as RM and
RecBCD, have been shown to activate bacterial immunity
[3,24-28]. The mechanisms of indirect immune activation
are generally not well understood.

To gain mechanistic insight into how phages interface
with host immunity, phage mutants can be isolated that
escape immune function. These mutations may be in
the gene(s) or sequence(s) activating immunity (i.e. the
‘trigger’), mutate a component that is the target of bac-
terial immune effectors, or activate expression of an anti-
immune inhibitor. Isolating escape mutants has the po-
tential to be an efficient and successful genetic approach
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Phage genetic approaches used to identify putative activators of bacterial immune systems. (a) Forward genetic screen via evolved phage genetic

mutants or (b) reverse genetic screen via unbiased phage genome frag

ments and then observing bacteria cell death and phage gene abundance.

because of the ability to generate large populations of
phage in the lab, coupled with the strong selective
pressure imparted by bacterial immune systems.
Mutations can be present naturally in the population,
introduced by mutagenesis, or result from recombination
with related phages. A mutation in a PhRAMP or effector
that activates immunity will suppress its activator func-
tion and result in phage resistance to immunity, which
may be referred to as an ‘escape’ phage (Figure
la). Another successful approach is a reverse genetic
screen, where phage genomic fragments are co-ex-
pressed with an immune system and then immunity-
dependent cell death is identified (IFigure 1b). This
approach has been used to identify PhAMPs that acti-
vate Abi or toxin—antitoxin (TA) systems.

Combining these genetic approaches with immune
function assays has validated several new protein
PhAMPs and effectors as bona fide activators [3,7,12,29],
where the immune activity is dependent on the addition
of the PhAMP or effector, which is standard for vali-
dating eukaryotic antiviral immune activity [16,17,30].
Several new bacterial immunity studies have also ap-
plied biochemical and structural approaches to further
define the mechanism of detection and activation
[14,21-25,28]. However, in many studies that yield
phage escape mutants, it is unknown whether the
identified gene(s) pinpoint the activator, target, or an-
other stage of bacterial immunity that has yet to be
characterized [11,26,31-33]. Moreover, these collective
studies focus on lytic phage infection, but it is also likely
that unique PhAMPs or effectors activate immune
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Phage-mediated effector activities that indirectly activate bacterial immune systems at the early stage of the phage life cycle. Examples of inhibition of
host transcription and DNA repair are shown. (a) ToxIN system becomes activated following phage-mediated inhibition of host transcription of the
toxIN locus [24]. (b) Retron—-Ec48 system becomes activated following phage-mediated inhibition of the host RecBCD complex [3]. Schematics are

adapted from their respective studies.

systems targeting lysogen establishment and is a po-
tential avenue of future discovery. Here, we review
evidence of the fundamental mechanisms of phage-
mediated activation of bacterial immunity, focusing on
protein PhAMPs and effector activities within the con-
text of the phage life cycle, and the genetic approaches
and escape phages that led to these insights.

Early-stage inhibition of host proteins or
processes

Following adsorption, phages inject their nucleic acid
into the bacterial cell and immediately express early
genes that often inhibit or manipulate host processes,
make lysis or lysogeny decisions, and initiate DNA re-
plication. Numerous studies have shown that early
phage genes encode protein inhibitors of conserved host
functions, which we refer to here as phage-mediated
effector activities, and serve as activators of bacterial
immunity (Figure 2).

Host transcription

Inhibition of host transcription has been implicated in
the ToxIN and dCTP/dGTP depletion systems. ToxIN
is a T'A system composed of a zox/ RNA antitoxin and a
ToxN RNase toxin that disrupts phage and host tran-
scription [24] (Figure 2a). RNA-seq and northern blot-
ting demonstrated that T4 phage infection inhibits host
transcription, including the zxIN locus, so that 7ox/ ex-
pression is rapidly stopped and residual zox/ is degraded

by host RNases. Following zox/ depletion, the ToxN
RNase is released and cleaves a sequence-specific motif
in phage mRNA. Many T4-encoded proteins inhibit
host transcription, but no single-phage protein was
identified as being essential for 7ox/N inhibition. Simi-
larly, inhibition or disruption of the host RNA poly-
merase (RNAP) is hypothesized to activate dCTP/
dGTP depletion systems [11], but how inhibition is
detected and induces activation of these systems is un-
known. During phage infection, E. co/i dCTP deaminase
or 8. putrefaciens dG'TPase activity resulted in a reduc-
tion in dC'TP or dG'TP levels, respectively. As a result of
reducing the pool of available dN'I'Ps, phage replication
stopped. T'7 escape phages of each system were isolated,
and all acquired mutations in gp5.7 and/or gp5.5. Gp5.7
shuts down o>-dependent bacterial RNAP transcription,
and the upstream position of gp5.5 suggests that it reg-
ulates gp5.7. dCTP deaminase-expressing cells infected
with Gp5.7 mutant phage incurred a smaller decrease in
dCTP levels compared with infection with Gp5.7 WT
phage. Future studies will need to test the dG'TPase
system, but current evidence suggests that phage-
mediated inhibition of host RNAP activates both
systems.

Host DNA production

Manipulation of host DNA synthesis activates a Retron
system expressed in Sa/monella enterica (Sen2) [25]. This
Retron system consists of a reverse transcriptase (RT)
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4 Evolution of anti-viral defense

and multicopy single-stranded DNA (msDNA) complex,
serving as the antitoxin and inhibiting the Rcal’ toxin.
RcaT is proposed to target nucleic acids or nucleotides
to induce cell death. To identify the activator, a reverse
genetic screen was performed and dam and reck genes
were identified to induce Retron-dependent cell death.
Dam is a bacterial DNA methyltransferase with homo-
logs encoded on phage genomes, and both versions can
induce Retron—-SenZ toxicity. [z wvitro experiments
showed that the bacterial Dam protein recognizes and
methylates a dsDNA motif in the msDNA, and Dam
expression levels during phage infection are sufficient to
do so. RecE is a prophage-encoded nuclease that de-
grades msDNA and disrupts the RT-msDNA complex.
Dam or RecE-mediated disruption of the RT-msDNA
complex activates the Rca'l' toxin. Future studies are
necessary to address the RcaT mechanism of toxicity
and Retron—-Sen?2 activation in the context of phage in-
fection.

Host DNA repair

Inhibition of the host DNA repair complex, RecBCD,
activates E. co/i Retron (Ec48) and Old nuclease sys-
tems. This Retron system’s RT-msDNA complex is
proposed to activate a toxic effector protein in response
to phage infection (Figure 2b). A-vir and T7 escape
phages acquired mutations in gam and gp5.9, respec-
tively, which are RecBCD inhibitors [3]. Another study
also identified A-vir gam mutants that evade a Sa/monella
Retron system (Se72) [26]. Co-expression of WT' gam
and Retron-Ec48 or Se72 reduced bacterial growth,
whereas co-expression of the mutant gam did not. In
parallel, expression of Retron—Ec48 or Se72 in cells with
a disrupted RecBCD complex (deletion of 7ecB) was
toxic, providing additional evidence that inhibition of
RecBCD activates specific Retron systems [3,26]. By
contrast, other Retron systems do not appear to detect
RecBCD inhibition (Eco8 [3,26]), and in other cases,
there is not sufficient evidence to support an Abi/cell
death strategy (Ecol [25]), suggesting a diversity of
Retron mechanisms. However, it remains unknown how
Retrons detect RecBCD inhibition and how activation
proceeds. Inhibition of the RecBCD complex (or dele-
tion of recB or rec()) also activates the Old nuclease en-
coded by the P2 prophage in other E. co/i strains, which
degrades phage and host DNA and causes cell death
[27,34]. Additionally, A mutants that escape Old harbor
deletions encompassing gam, similarly to Retrons, sug-
gest that Gam-mediated inhibition of RecBCD is a
common phage effector activity. Follow-up iz vivo and in
vitro experiments are required to determine how the
Gam—-RecBCD complex is detected by each respective
anti-phage immune system.

Host restriction enzymes
Inhibition of the host restriction enzymes (RE) has been
studied in the context of PrrC and phage anti-restriction-

induced system (PARIS). PrrC is a tRNAlYS—speciﬁc an-
ticodon nuclease that is turned on by a phage anti-RM
protein (Stp) [35]. In vitro experiments showed that the
Stp protein inhibits Ecoprrl restriction activity and PrrC
directly binds to and monitors Ecoprrl [28]. PrrC there-
fore detects Stp-mediated inhibition of Ecopr7l and then
activates its ribonuclease domain to cleave tRNAM®, in-
hibits translation, and abrogates phage replication
[36,37]. A recent study also hypothesized that inhibition
of host RE activates PARIS, which is an ATPase and
TOPRIM-based system that causes cell death [4]. Het-
erologous expression of PARIS in an E. co/i strain that
naturally harbors EcoKI was initially used for experi-
ments. T'7 escape mutants acquired mutations in ocr,
which is a DNA mimic protein that inhibits EcoKI.
However, it was also shown that T7 escape phages can
acquire ocr mutations in the presence of PARIS alone,
suggesting that PARIS may respond to the Ocr protein
itself, or interactions between Ocr and another uni-
dentified host protein. In turn, it is possible that PARIS
has evolved to detect both protein PhAMPs and effector
activities to induce immune activation.

Middle-stage phage DNA replication,
recombination, or repair

As phage infection progresses, so does DNA replication
and the expression of middle-stage genes that are in-
volved in DNA recombination, repair, and nucleotide
metabolism. These genes have been implicated in sev-
eral studies of bacterial immune systems as putative
PhAMPs, which by themselves or in complex with other
phage components, activate immunity. However, in
nearly all studies, the molecular mechanisms appear to
be complex and specific PAAMPs have yet to be vali-
dated as bona fide activators.

DNA replication proteins

Phage DNA replication or recombination intermediates,
and the phage proteins mediating DNA replication, are
connected to several different bacterial immune sys-
tems. Intermediates of DNA replication or recombina-
tion are hypothesized to activate the Rex system, which
is encoded in E. coli A prophages and inhibits T4 rII
mutant phage replication [38,39]. The main evidence
lies in a heterologous expression system of RexA/B,
where RexB activation is observed at the point of T4
DNA replication and recombination. In turn, RexA is
proposed to detect a phage DNA-protein complex, likely
a by-product of DNA replication or recombination, and
then directly activates the RexB transmembrane protein
[40]. RexB then disrupts cell membrane potential and
A'TP levels, abrogating phage replication. Phage proteins
involved in replication have also been implicated in the
recently identified Borvo and AbpA/B systems. Phage
DNA polymerase (DNAP) interactions with DNA and/
or proteins are hypothesized to activate the Borvo
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system [26]. SEC®4 mutant phages that escape E. co/i
Borvo acquired multiple mutations across its genome,
but each phage harbored mutations in its predicted
DNAP. Co-expression of WT' phage DNAP and Borvo
reduced bacterial growth, whereas co-expression of the
mutant phage DNAP only partially inhibited growth.
Additional DNAP mutants were isolated in T5 and
SEC®18 phages, yet there is no detectable sequence
identity between the DNAP of T5 and SEC®4 or
SEC®18 phages, so it is proposed that the DNAP
structure, its complex with other proteins or DNA, or the
downstream product activates Borvo. Characterizing
Borvo protein function and its binding partners is re-
quired to test this hypothesis. Lastly, phage DNA heli-
case mutants were shown to evade the AbpA/B system,
which is encoded in the E. co/i CP4-57 prophage and
inhibits T4 phage replication [31]. T4 escape phages
were isolated and most, but not all, acquired mutations
in the T4 DNA helicase gene. The study has yet to
determine the function of AbpA/B proteins or the me-
chanistic connection to the phage DNA helicase.

DNA modification proteins

Phage DNA-modifying proteins, as well as modified
phage DNA itself, have been implicated in bacterial
immunity. Specifically, DNA methylation has been
connected to the Dazbog system [26]. Bacillus mycoides
Dazbog was heterologously expressed and used to iso-
late escape phages, which acquired mutations in its
DNA cytosine methylase gene. Co-expression of WT
phage methylase and Dazbog reduced bacterial growth,
while co-expression of the mutant phage methylase did
not. In vitro experiments showed that WT protein me-
thylates phage DNA and the mutant protein abolishes
methylation, suggesting that methylated phage DNA or
the active phage methylase enzyme induces Dazbog-
dependent cell death. However, like many new systems,
the molecular function of Dazbog and its putative sen-
sing mechanism remain uncharacterized. Lastly, phage
DNA modifying, packaging, and binding proteins in-
duce restriction by an adenosine deaminase acting on
RNA (RADAR) [2], yet the mechanisms of detection
and activation are unknown. RADAR was proposed to
edit host and phage RNA and induce in cell death, but
recent studies presented evidence that RADAR func-
tions in ATP mononucleotide deamination [41,42]. To
identify the activator, a reverse genetic screen with T2
phage genomic fragments was performed in RADAR-
expressing cells and then ATP deamination was quan-
tified. Several phage genomic fragments induced
RADAR-dependent deamination, and then individual
genes were identified as DNA-interacting proteins.
Notably, co-expression of WT' phage genes dam (DNA
adenine methyltransferase), a-g# (DNA alpha-glucosyl-
transferase), and 7#4 (Rnase H) induced RADAR-de-
pendent deamination, while active-site mutations in
those enzymes reduced it. This suggests the outcome of

the phage protein activity may activate RADAR, or
multiple, diverse PhAMPs are directly detected.

Single-stranded DNA-binding proteins

Phage single-stranded DNA-binding (SSB) proteins
have roles in replication, recombination, and repair, and
this conserved phage protein may activate many dif-
ferent bacterial immune systems. SSB interactions with
DNA during replication or recombination are implicated
in T-even inhibition (Tin) immunity [43]. T4 escape
phage acquired mutations in its SSB gene, which en-
codes a protein that is involved in the formation of
multiprotein—nucleic acid helical filaments. In turn, Tin
is proposed to target and disrupt the phage SSB-DNA
filament complex, preventing downstream DNA re-
plication and recombination. [z vitro experiments de-
monstrate that Tin and the phage SSB protein directly
interact [44]. Since phage targets and activators are not
mutually exclusive, SSB/DNA complex may serve both
functions for Tin Phage SSB protein interactions with
replicating or recombining DNA are also hypothesized
to activate the Hachiman system [26]. In the same study,
phage SSB mutants were shown to evade Retron sys-
tems. Escape phage (from parental phages SPR, rhol4,
and SBS¢J) that evade B. cereus Hachiman harbored
mutations in their SSB genes. SPR escape phage also
contained large (~4 kb) deletions that encompassed the
DNA ligase and uncharacterized or hypothetical pro-
teins. In parallel, heterologous expression of K. coli
Retron (Eco8) led to 'T'7, SECd4, SECP6, and SECH18
escape mutations in, or upstream, of the phage SSB
genes. Co-expression of WT SSB proteins with either
Hachiman or Retron—-Eco8 reduced bacterial growth,
while the SSB mutations partially restored growth of
Hachiman-expressing cells and fully restored growth of
Retron—Eco8-expressing cells. Follow-up work with the
Retron-Eco8 system demonstrated that the WT SSB
protein pulled down with the Retron msDNA while the
mutant SSB did not, suggesting that Retron-Eco8 di-
rectly detects and is activated by SSB-msDNA binding
interactions. By contrast, the mechanisms of phage de-
tection for the Hachiman system still remains unknown.
Lastly, SSB proteins are hypothesized to directly acti-
vate nuclease-helicase immunity (Nhi) [32]. Nhi is a
nuclease-helicase enzyme that likely degrades phage
DNA, inhibiting phage replication while leaving host
cells viable. The Nhi-sensitive phage JBugl8 acquired
resistance to Nhi through exchange of its truncated SSB
with another phage’s full-length SSB. In vitro experi-
ments with Nhi, phage DNA, and SSB variants are ne-
cessary to determine whether full-length SSB protein is
an activator, target, or protecting against Nhi activity.

Late-stage phage structural or lysis proteins
The final stage of the phage life cycle involves assembly
and organization of the mature virion, such that capsid
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PhAMPs that directly activate bacterial immune systems at the late stage of the phage life cycle. Examples of phage structural proteins are shown. (a)
The CapRel®?*¢ system becomes activated following direct binding to the phage major capsid monomer to the CapRel$?*¢ protein [23]. (b) Pycsar
becomes activated by the phage major capsid protein in an indirect manner [29]. (c) Avs system becomes activated following tetramerization and

binding of phage portal (or terminase) protein [14]. Schematics are adapted from their respective studies.

proteins come together, packaging proteins shuttle nu-
cleic acid into the capsid, and then the tail is attached.
Several studies have demonstrated the phage capsid,
packaging, and tail proteins serve as PhAMPs that di-
rectly bind to and activate their respective bacterial
immune systems (Figure 3). We anticipate that phage
proteins involved in cell lysis are also PhRAMPs, but they
have yet to be identified. Therefore, PhAMPs that di-
rectly activate bacterial immune systems are another
essential and widely observed strategy of immune acti-
vation.

Capsid proteins

Phage major capsid proteins directly activate the
CapRel¥™* protein, whereby its C-terminal antitoxin
domain autoinhibits its N-terminal toxin domain.
Following phage infection, the major capsid protein di-
rectly binds to and stabilizes CapRel™* into its open,
active state so that it can pyrophosphorylate tRNAs,
inhibit translation, and cause cell death [23] (Figure 3a).
To identify the activator, CapRel™*® was heterologously
expressed and genetically diverse phages were used to
identify escape mutants. SEC®27 and Bas8 escape
phages acquired mutations in their major capsid protein.
Co-expression of the SEC®27 WT major capsid pro-
teins, but not the mutant version, induced a CapRelSJ46—
dependent reduction in translation and bacterial growth.
In parallel, co-expression of the Bas5 or Bas8, but not
Bas4 major capsid protein, resulted in CapRel*-

dependent reduction in bacterial growth and led to the
identification of an amino acid residue (F113) that likely
binds to the CapRel®*® protein. Co-IP and ITC ex-
periments validated direct binding of the SEC®27 major
capsid protein to CapRel®*® and AlphaFold software
predicted a heterodimer structure. These genetic and
biochemical results demonstrate that the major capsid
protein is a bona fide PhAMP, and suggest that Ca-
pRel¥*® may detect diverse phage capsids. Similarly, the
phage major capsid protein is hypothesized to directly
activate phage inhibition by F factor A (PifA), which is a
part of the pif operon encoded on the F plasmid that is
typically found in FE. cofi [45-47]. T3 and T7 escape
phages acquired mutations in a G'TPase inhibitor and its
major capsid protein. PifA-dependent cell death and
inhibition of phage replication occurs in cells expressing
T3 or T'7 WT major capsid genes; however, follow-up
studies are required to determine the connection be-
tween PifA activity and the phage G'TPase inhibitor and
major capsid proteins.

Phage major capsid protein complexes directly activate
Lit, and may also be implicated in pyrimidine cyclase
system for antiphage resistance (Pycsar) and cyclic-oli-
gonucleotide-based antiphage signaling system (CBASS)
immunity. A complex of the phage major capsid protein
with the host elongation factor EF-Tu activates Lit (late
inhibition of T4) [22]. Lit is a protease that directly
binds to and cleaves EF-Tu, inhibiting protein synthesis

Current Opinion in Microbiology 2023, 74:102325
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and causing cell death. T4 escape phages acquired mu-
tations within a 29-amino acid sequence of the major
capsid protein N-terminal domain, which was later
dubbed as the Gol (grow on Lit-producing bacteria)
peptide [48]. Biochemical and structural experiments
determined that Lit directly detects the Gol-EF-Tu
complex, and in doing so, serves as the PhAMP that
directly activates its protease function.

Phage major capsid mutants were demonstrated to limit
Pycsar-mediated production of cyclic mononucleotide
signaling molecules [29], but the mechanism of detec-
tion and activation remains unclear. LC-MS revealed
that E. coli or X. perforans Pycsar expression coupled with
phage infection leads to an increase of cCMP or cUMP
molecules, respectively. T'5 escape phage acquired mu-
tations in the major capsid gene, which abolished cCMP
production. However, the WT major capsid protein
alone was insufficient to induce Pycsar-dependent cell
death nor did it pull down with the Pycsar cyclase.
These data suggest a higher-ordered complex with the
phage major capsid protein and an additional phage or
host component may activate Pycsar (Figure 3b). Lastly,
phage major capsid mutants evade CBASS [33], which
utilizes a variety of cyclic nucleotides to activate a
downstream effector that typically results in cell death
[8,49]. A native P. aeruginosa Type-11-A CBASS host was
identified that generates cGAMP molecules following
PaMx41 phage infection. Following the removal of an
identified anti-CBASS gene, genetically distinct phages
escaped CBASS with acquired mutations in their major
capsid gene. However, like Pycsar, co-expression of the
WT major capsid gene did not induce CBASS-depen-
dent cell death. Future studies will need to focus on
understanding how the WT and mutant major capsid
proteins impact the initial step of CBASS — cGAMP
production — and therefore determine whether the
phage capsid is involved in CBASS activation. Similarly,
a recent study on Type-I-B CBASS identified escape
phage with mutations in its scaffold gene, which is an
essential componente for mature capsid assembly.
However, the authors suspect that phage capsids are not
involved in CBASS activation, but rather direct binding
of a structured, double-stranded phage RNA to the
systems’ cyclase activates ¢cGAMP production [50].
However, it is important to note that this CBASS sys-
tem’s cyclase specifically accomodates viral RNA
binding, while others may not, suggesting that there are
multiple different mechanisms of phage-mediated acti-
vation of CBASS immunity.

Virion assembly proteins

Phage proteins involved with efficient transport of DNA
into the mature capsid directly activate antiviral STAND
(Avs) N'TPases and an serine/threonine kinase (STK)
system. Phage portal or terminase proteins directly bind
to and activate Avs, inducing dsDNA degradation and

cell death [14] (Figure 3c). Portal proteins are critical for
virion assembly, serving as a channel for genome trans-
port into the capsid and a site for tail attachment, while
terminase proteins use ATP hydrolysis to cut and
package the phage genome into the capsid. To identify
these activators, a reverse genetic screen was performed
with E. coli phage ®V-1 fragments co-expressed in cells
harboring Avs4 or Avs3 and then the cells were deep-
sequenced. Gene fragments eliminated from cells in an
Avs-dependent manner were further analyzed and
identified the portal and terminase proteins as putative
PhAMPs that directly activate Avs4 and Avs3, respec-
tively. A follow-up genetic screen was performed that
cloned portal and terminase proteins from 24 different
phages and co-expressed them in cells harboring one of
15 different Avs systems. Diverse portal and terminase
proteins activated the Avs, highlighting the breadth of
detectable PhAMPs. Structures of the portal-Avs4 or
terminase-Avs3 complex revealed tetramerization of the
Avs protein, and identified key contact residues in the
phage proteins. I vitro experiments validated that the
PhAMPs directly induce Avs-mediated dsDNA de-
gradation. This combination of genetic, biochemical, and
structural approaches thoroughly validates phage portal
and terminase proteins as PhAMPs.

A new phage DNA packaging protein (PacK) is proposed
to directly activate the STK2 system [7], yet the me-
chanism of detection and activation is unclear. Following
phage infection, STK2 is activated through autopho-
sphorylation and then phosphorylates downstream host
proteins, disrupting normal cell function and inducing
cell death. STK2 was initially identified using §. ¢pi-
dermidis RP62a deletion strains. In the native host,
STK2-dependent phage targeting was observed and
then STK2 was heterologously expressed for down-
stream experiments. $NM1 escape phages acquired
mutations in a gene of unknown function. DNA se-
quencing of the escape phages showed high DNA cov-
erage up until the phage pac site and then gradually
dropped for the remainder of the genome, suggesting
that capsids contain only part of the phage genome that
is packaged first. Therefore, the authors concluded that
the gene is involved in DNA packaging and renamed it
to pacK. Co-expression of PacK and STK2 resulted in
STK2-dependent cell death and phosphorylation of
PacK, STK2, and multiple cellular homeostasis proteins.
However, it is still unclear how PacK proteins are de-
tected and whether other host kinases are involved in
this immune system.

Tail proteins

Phage tail proteins directly activate the defense-asso-
ciated sirtuin 2 (DSR2) system [12]. DSR2 is an NADase
that depletes NAD™ and causes cell death following
phage infection. A unique system was established to
isolate escape phages, where two distinct bacterial
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mutations in EcoKI
inhibitor Ocr

Genetic approach
(T7 gp0.3)

and mutants
Naturally evolved

proteins that mimic DNA (Ocr)
are detected and activate the

Hypothesized that phage
system

Mechanism of activation

(unknown target), results in

Mechanism of immunity
PARIS is an ATPase
cell death

Phage

heterologous expression in
E. coli host (MG1655 or

Experimental model
Bacterial host (strain)
Escherichia coli (B185)
DH10B)

Effector activity
Hypothesized
inhibition of RE

(subtype)

Immune
system

Table 2 (continued)

immune systems that target different phages were co-
expressed and subsequently forced phages to undergo
recombination-mediated genetic exchange for survival.
B. subtilis DSR2 and Fibrobacter pVip7 systems were co-
expressed and resulted in SPR hybrid escape phages
that acquired multiple genomic fragments, one of which
included the tail tube gene. Co-expression of the WT
tail tube and DSR2 resulted in DSR2-dependent cell
death and reduced NAD™, and co-IP of the WT tail tube
and DSR2 proteins demonstrated direct binding. Struc-
tural studies are the last step to define the DSR2 me-
chanisms of detection.

Questions

Numerous questions remain in this re-emerging field of
bacterial immunity and mechanisms of activation in the
context of phage infection. First and foremost, many
studies observe that some bacterial immune systems
target multiple unrelated phages, but with varying
strengths and escape frequencies, leading to many dif-
ferent hypotheses: (i) phages harbor different PhRAMPs
or effectors that activate the same system, (ii) phages
harbor the same PhAMP or effector, but the ‘strength’ or
ability to activate the system differs, (iii) phages harbor
different targets that affect their sensitivity toward im-
mune activity, and/or (iv) phages harbor anti-immune
genes that may be fully or partially protective. Another
common observation is that different phages escape a
single system through acquiring mutations in different
genes, which could mean (i) phages are escaping dif-
ferent stages of immunity, (ii) phage components co-
operate to escape, (iii)) phage components have
redundant function, or (iv) phages acquired passenger
mutations that are not involved in escape. Additionally,
studies have noted that a single escape phage can ac-
quire multiple different mutations across its genome,
supporting the previously described ideas as well as: (v)
phage escape mutations have a polar effect (e.g. one
mutation affects upstream or downstream gene(s)) or (vi)
phage escape mutations are dominant over another
mutation. Lastly, numerous studies concluded that their
bacterial immune systems had unknown or hypothetical
activation mechanisms and remain a rich source of new
discoveries. Additional genetic screens, or biochemical
pull downs, of the identified WT and mutant phage
components could identify new PhAMPs and effector
proteins.

Conclusion and future directions

Co-evolution of phages and bacterial immune systems
has resulted in a rapidly expanding diversity of immune
activation, and discovery-driven biology has provided us
fundamental insights into the molecular mechanisms of
phage detection and activation. This has led us to define
strategies of phage-mediated activation as (i) detection
of PhAMPs that directly activate bacterial immunity
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(‘Table 1), and (i1) detection of phage-associated effector
activities that indirectly activate bacterial immunity
(‘Table 2). Of the protein effectors we discussed, their
activities occur during the early stage of the phage life
cycle and interfere with conserved host processes. By
contrast, protein PhAMPs were typically identified as
late-stage structural proteins. However, it is also possible
that bacterial immune systems may also target a specific
stage of the phage life cycle (e.g. directly inhibiting
phage tail assembly or DNA packaging) rather than use
it as an activation signal for cell death or dormancy
outcomes. To date, identification of phage targets of
immunity has received little attention and presents new
opportunities for research and discovery. Furthermore,
given the conservation of eukaryotic and prokaryotic
anti-viral immunity, the field is beginning to appreciate
how the discovery of new bacterial immune systems may
inform us about previously unknown anti-viral immune
systems in humans [51]. Therefore, it is likely that we
can gain further insight into each respective immune
system through identification of new phage activators
and targets.

Of the studies discussed in this review, many of the
future directions consist of understanding the core im-
mune protein functions, testing the 7z vivo or in vitro
effect of WT" and mutant phage components on bacterial
immunity, and clarifying the role of additional phage
escape mutants. However, there are several new bac-
terial immune systems that have identified the stage of
the life cycle that phage fails to replicate (e.g.
Jumbophage Killer (Juk)), but the activator is unknown
and phage escape mutants have yet to be isolated
[9,10,52-58]. Other systems have an unknown me-
chanism of immunity [1,6], but several phage escape
mutants have been isolated that may pinpoint their ac-
tivating PhAMP or effector [26]. There are also several
instances where escape phages have been isolated, yet
they acquire mutations in genes of unknown function
[26]. Altogether, there are many exciting avenues to
expand our understanding of bacterial immunity. Akin to
the explosion of activators of eukaryotic receptors or
sensors in anti-viral innate immunity, we expect that a
similar wave of characterized PhAMPs and effector ac-
tivities in bacterial immunity will manifest in the next 10
years.
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