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Discovery of multiple anti-CRISPRs highlights
anti-defense gene clustering in mobile
genetic elements
Rafael Pinilla-Redondo1,2,3,10, Saadlee Shehreen4,10, Nicole D. Marino2, Robert D. Fagerlund5,6,

Chris M. Brown 4,6,11, Søren J. Sørensen 1,11, Peter C. Fineran 5,6,7,11✉ & Joseph Bondy-Denomy 2,8,9,11✉

Many prokaryotes employ CRISPR–Cas systems to combat invading mobile genetic elements

(MGEs). In response, some MGEs have developed strategies to bypass immunity, including

anti-CRISPR (Acr) proteins; yet the diversity, distribution and spectrum of activity of this

immune evasion strategy remain largely unknown. Here, we report the discovery of new Acrs

by assaying candidate genes adjacent to a conserved Acr-associated (Aca) gene, aca5,

against a panel of six type I systems: I–F (Pseudomonas, Pectobacterium, and Serratia), I–E

(Pseudomonas and Serratia), and I–C (Pseudomonas). We uncover 11 type I–F and/or I–E anti-

CRISPR genes encoded on chromosomal and extrachromosomal MGEs within Enterobacter-

iaceae and Pseudomonas, and an additional Aca (aca9). The acr genes not only associate with

other acr genes, but also with genes encoding inhibitors of distinct bacterial defense systems.

Thus, our findings highlight the potential exploitation of acr loci neighborhoods for the

identification of previously undescribed anti-defense systems.
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A ll cellular life is under the constant threat of invasion by
foreign genetic elements. Prokaryotes are outnumbered by
a wide spectrum of mobile genetic elements (MGEs) that

infect them, including viruses and plasmids. This selective pres-
sure has driven the evolution of diverse defense mechanisms,
including restriction-modification systems, abortive infection,
and clustered regularly interspaced short palindromic repeats
(CRISPR) and CRISPR-associated (Cas) genes1,2.

CRISPR–Cas loci have been identified in sequenced genomes
of around 40% of bacteria and 85% of archaea3 and are occa-
sionally carried by a wide range of MGEs4–6, bearing testament to
their evolutionary and ecological importance. This mode of
defense allows cells to remember, recognize and thwart recur-
rently infecting agents. Broadly, CRISPR–Cas immunity consists
of three main stages: adaptation, processing/biogenesis, and
interference7. During adaptation, snippets of an invading genetic
element are incorporated into CRISPR arrays as “spacers”
between repeat sequences, yielding a heritable record of former
genetic intruders. The CRISPR array is then expressed as a long
transcript (pre-crRNA) that is processed into single CRISPR
RNAs (crRNAs), which guide Cas nucleases to target invading
nucleic acids that carry a complementary sequence to the spacer
(referred to as protospacer).

In response to the strong selective pressure exerted by
CRISPR–Cas immunity, many MGEs have developed inhibitors
of CRISPR–Cas function called anti-CRISPR (Acr) proteins8. The
first acr genes were discovered in phages that inhibit the type I–F
CRISPR–Cas system of Pseudomonas aeruginosa9. Many more
non-homologous Acr proteins have been subsequently reported
for different CRISPR–Cas types (e.g., types II, III, and V)10–15,
including some on non-phage MGEs16. Previous structural and
biochemical characterization of Acr proteins has revealed a
diverse range of inhibitory activities, including interference with
crRNA loading, inhibition of target DNA recognition, and inhi-
bition of DNA cleavage, among others17. Apart from sharing a
typically low molecular weight, Acrs lack conserved sequence and
structural features, thus rendering de novo prediction largely
impractical with current methods. However, acr genes tend to
cluster within loci that encode more conserved Acr-associated
(Aca) proteins8,18, which are transcriptional repressors of the acr
locus19,20. The aca genes are often more broadly distributed than
acr genes and have been used to uncover new acr loci12,14,18,21.

The discovery of Acr proteins explains how MGEs can persist
despite frequent targeting by host spacer sequences. Acrs are
predicted to be a strong driver for the diversification of
CRISPR–Cas systems in nature and the accumulation of other
defense systems in prokaryotic genomes. Because MGEs facilitate
host genome rearrangements and provide the foundation for vast
prokaryotic gene exchange networks, the study of Acrs allows a
better understanding of MGE-host interactions and the hor-
izontal transfer potential of MGE-encoded traits (e.g., antibiotic
resistance) across microbiomes. Practically, Acr proteins also
benefit phage-based therapeutics and plasmid-based delivery
platforms and provide a means to control CRISPR–Cas-derived
biotechnologies22.

In this study, we investigate the interactions between MGEs
and their bacterial hosts, focusing on uncovering new Acrs that
enable MGEs to avoid potent host defense mechanisms. We
describe the discovery of 11 type I–F and/or I–E Acr families
encoded by phage and non-phage MGEs by leveraging aca5 and a
newly identified aca gene (aca9) as markers for acr loci. Bioin-
formatic analyses further revealed that acrs co-locate with other
anti-defense systems within MGE genomes, suggesting the exis-
tence of anti-defense gene clusters and highlighting a potential
avenue for the discovery of unknown anti-defense genes.

Results
An aca5-based computational search for Acr candidates. To
uncover how MGEs within the Enterobacteriales order cope with
the pressure of CRISPR–Cas immunity, we performed bioinfor-
matic searches using the Enterobacteriales-enriched aca5 gene12

that is encoded downstream of several acrIF11 orthologs. These
searches revealed a wide phylogenetic distribution of aca5
homologs across bacterial families (Fig. 1a), including members
of the Salmonella, Pectobacterium, Klebsiella, Serratia, and
Escherichia genera. Distant homologs were also identified in other
bacterial orders (e.g., Vibrionales) at a considerably lower pre-
valence (<5%). Importantly, these organisms are enriched with
class 1 CRISPR–Cas systems (primarily types I–F and/or I–E)3,
suggesting that their MGEs may rely on unknown type I inhi-
bitors to bypass immunity.

Based on common characteristics of known Acr proteins, we
restricted our candidate list to small predicted proteins (<200
amino acids) encoded upstream of aca5 within genomic regions
containing numerous MGE-associated genes. Following this
approach, we identified several acr candidates residing in
prophages from genomes of Pectobacterium, Serratia, Klebsiella
and Citrobacter, and 10 genomes harboring a diverse set of
putative acr genes were selected for further study (Fig. 1b and
Supplementary Data 1). Notably, while the position of aca5
remained fixed across these putative acr operons, acr candidates
often co-occurred in shuffled clusters of 2–4 genes, as seen for
other acr loci9,12,13,23.

Bacteria that express acrs can tolerate “self-targeting” spacers
that, in the absence of CRISPR–Cas inhibition, would otherwise
cause lethal genomic cleavage9,24–26. The presence of these self-
targeting spacers can therefore be used to identify bacterial
genomes that likely encode anti-CRISPR proteins capable of
inhibiting their endogenous CRISPR system12,13,15,27. We found
that 8 out of the 10 selected genomes contained several I–F and/
or I–E self-targeting spacers (Fig. 1b, right and Supplementary
Data 1 and 2). A large number of these spacers (21/34—62% of all
self-targeting hits) matched targets within the predicted pro-
phages carrying the acr candidates (Supplementary Data 2). Due
to the promiscuous PAM of I–E28–30, we were unable to
confidently ascertain whether the PAM would enable targeting
of the predicted spacer-protospacer matches. However, most I–F
protospacers (83%) were flanked by the conserved I–F 5’-GG-3’
PAM, as described previously31,32 (Fig. 1c and Supplementary
Data 2). Collectively, we concluded that the identified prophage
genomes likely harbored acr loci and proceeded to experimentally
test the 9 selected type I–E/I–F candidate acr genes.

Newly identified Acr proteins inhibit different type I
CRISPR–Cas systems. The nine candidate acr genes (and four
additional homologs, denoted here by a decimal number after the
Acr name) were tested against a panel of type I CRISPR–Cas
systems: two type I–E variants (Serratia sp. ATCC39006 and
Pseudomonas aeruginosa SMC4386), three type I–F variants
(Serratia sp. ATCC39006, Pseudomonas aeruginosa PA14, and
Pectobacterium atrosepticum SCRI1043), and one type I–C sys-
tem (engineered strain of Pseudomonas aeruginosa PAO1). We
challenged each of the model organisms with a CRISPR-targeted
phage and assayed whether its replication could be restored by an
acr candidate gene (Fig. 2a). Notably, the different CRISPR–Cas
subtypes and variants in the chosen model organisms span a
wide phylogenetic diversity. While some of the tested systems
display high degrees of similarity (e.g., >80% a.a. identity) with
the CRISPR–Cas systems present in the endogenous acr hosts,
others exhibit high divergence (<50% a.a. identity) (Fig. 2 and
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Supplementary Data 3), allowing us to test for possible differences
in the breadth of inhibitory activity.

Our screening revealed that each of the 9 candidate acr families
tested inhibited the function of either one or more of the
CRISPR–Cas subtype/variants challenged (Fig. 2c). Most candi-
dates (6/9) potently inhibited the Pectobacterium and Serratia
type I–F systems; only a few inhibited the Serratia type I–E and/
or Pseudomonas type I–F strongly (3/9 and 2/9, respectively), and
none affected the function of the Pseudomonas type I–E and I–C
systems. Overall, these results are consistent with the higher
similarities between the type I–F and I–E CRISPR–Cas system
variants present in the hosts encoding the acrs and the
Pectobacterium and Serratia model system variants used for

testing (Fig. 2b). Interestingly, our results revealed that
AcrIF18.1* and AcrIF22* exhibit broad inhibitory functions,
robustly inhibiting the Serratia type I–E system and diverse type
I–F variants (dual subtype inhibition denoted with an asterisk)
(Fig. 2b, c). In addition to AcrIF18.1*, AcrIF15 strongly inhibited
all three type I–F systems, whereas AcrIF16 and AcrIF17.1
inhibited Pseudomonas type I–F immunity less potently in our
assays. AcrIE8 was the only type I–E-specific inhibitor identified
in our work. All of the acr homologs tested (AcrIF20.2—65%
identity, AcrIE8.2—76%, AcrIF18.2*—96%, and AcrIF17.2—
39%) showed comparable inhibitory activities to their counter-
parts, with the exception of AcrIF17.2 from Citrobacter which,
unlike its distant homolog in Pectobacterium, did not inhibit the
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type I–F system from P. aeruginosa (Supplementary Fig. 2). Our
results indicate that Acrs tend to strongly inhibit the CRISPR-Cas
subtype variants that are closely related to the one encoded by
their host bacteria, yet certain Acr proteins (e.g. AcrIF15 and
AcrIF18*) show remarkable inhibitory breadth, robustly blocking
I-F CRISPR-Cas variants displaying <50 % amino acid identity
(Fig. 2b, c).

Identified Acrs are spread across diverse Proteobacteria and
MGE types. To explore the phylogenetic distribution of the new
Acrs, publicly available prokaryotic sequences at NCBI were

searched for homologs. The resulting analyses revealed a hetero-
geneous Acr distribution across Proteobacteria, most belonging to
Enterobacteriaceae (Supplementary Fig. 3 and Supplementary
Data 4). As expected, the total collection of hosts encoding these
acrs showed enrichment of genera frequently encoding
CRISPR–Cas types I–F and/or I–E (e.g., Salmonella, Serratia, Cro-
nobacter, Klebsiella, Pectobacterium) (Supplementary Data 1).
Interestingly, while AcrIF19–22 are primarily confined to species of
the Pectobacterium genus, the rest (AcrIF15–IF18* and AcrIE8)
radiate over wider phylogenetic ranges (Supplementary Fig. 3 and
Supplementary Data 4). For instance, homologs of AcrIF17 and
AcrIF16 are present in bacterial families in addition to
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Enterobacteriaceae, such as Pseudomonadaceae, Burkholderiaceae,
Halomonadaceae, and Desulfobacteraceae, and Yersiniaceae,
Vibrionaceae, and Shewanellaceae, respectively.

We then scanned the genomic contexts (~25 kb upstream and
downstream) surrounding the acr homologs to identify marker
genes that could provide situational insights (Supplementary
Data 4). Our analyses revealed the association of the identified
acrs with distinct types of MGEs, including phages and
conjugative elements (Fig. 2d). The position and composition of
acr loci relative to neighboring gene cassettes, were highly
variable between MGEs (Supplementary Fig. 4). We observed
related phage genomes harboring completely distinct acr loci, in
some cases carrying a different aca gene (Fig. 3 and Supplemen-
tary Fig. 4), and sometimes lacking a known aca (Supplementary
Fig. 5). For example, we found a number of sequenced
Pectobacterium genomes with integrated prophages that have
similarities with Pectobacterium phage ZF40 (a phage carrying the
acrIF8-aca2 locus)18,20, but in the remaining cases the prophage
regions encoded different combinations of acr(s), together with
aca5 (Fig. 3). This observation, together with the common
detection of closely related aca and acr homologs within
taxonomically mixed bacterial clades (Fig. 1a and Supplementary
Fig. 3, Supplementary Data 4), indicates that these genes are
prone to frequent recombination events and horizontal transfer
between diverse MGEs.

Inhibition by AcrIF18* and AcrIF15 manifests upstream of
target DNA binding. Previous mechanistic characterizations of
Acr proteins have revealed a diverse range of inhibitory activities,
such as interference with crRNA loading, inhibition of target
DNA recognition, and inhibition of DNA cleavage8,17. The newly
discovered Acr families present substantial differences in their
biochemical properties: molecular weights (MW) ranging from
7.5 to ~20 kDa and predicted average isoelectric points (pI)
spanning from acidic net charges (~pH= 4) to basic (~pH= 10)
(Fig. 4d and Supplementary Fig. 6). These data, together with the
observed lack of sequence homology between them, suggest
potential differences in their mechanisms of action.

Using a previously established CRISPRi system33,34, we sought
to investigate whether any of the identified inhibitors of the P.
aeruginosa I–F CRISPR–Cas system (AcrIF15–18*) act upstream
of Cascade-target DNA binding. In this CRISPRi assay, the PA14

I–F Cascade complex is crRNA-guided to represses the promoter
of phzM (phzM-crRNA). Because PhzM is required for the
production of the blue-green pigment pyocyanin, target DNA
binding leads to a color change in the culture medium, from
green to yellow. We constructed CRISPRi lysogens carrying
DMS3m prophages expressing each Acr (AcrIF15–18*) and
looked for CRISPRi inhibition (Fig. 4a). Cultures expressing
AcrIF18* or AcrIF15 exhibited no significant change in
pyocyanin accumulation compared to the absence of phzM-
crRNA control (always green) (Fig. 4b, Supplementary Fig. 7).
This indicates that their inhibitory activities manifest at a stage
prior to target DNA binding. On the other hand, AcrIF16–17 did
not block CRISPRi (a significant decrease in pyocyanin produc-
tion is observed; yellow cultures) suggesting inhibition manifests
downstream of DNA-binding.

Identification of a previously undescribed Aca and two type
I–F Acrs. While exploring the genomic contexts of the identified
acrs, we noticed that two AcrIF22* orthologs (encoded by a
Raoultella phage and a Klebsiella plasmid, Supplementary Data 4)
were located upstream of the same small gene of unknown func-
tion distinct from, but in the same position as, aca5 (Fig. 5a).
Motivated by this finding, we sought to investigate the potential
Aca role of this gene further. A hallmark of all other previously
identified Aca proteins is the presence of a helix-turn-helix
(HTH) DNA-binding domain, necessary for the transcriptional
repression of the acr operon19,20. Multiple sequence alignments of
diverse representatives followed by functional domain prediction
analyses revealed a conserved HTH motif in the hypothetical
protein (Fig. 5b and Supplementary Figs. 8 and 9). Phylogenetic
analyses showed a wide distribution of homologs across diverse
Proteobacterial MGEs, including phages (50%) and plasmids
(38%) (Fig. 5c and Supplementary Data 6). Moreover, our search
revealed that this gene is also encoded downstream of an acrIF15
homolog in a Pectobacterium plasmid (Fig. 5c). Taken together,
these results indicate this is an anti-CRISPR associated (aca) gene,
hereafter referred to as aca9.

To test whether aca9 could be exploited as a marker for acr
discovery, we searched for aca9-associated genes with homologs
in P. aeruginosa, one of our model CRISPR–Cas organisms
(Fig. 5d). We identified a P. aeruginosa homolog of a hypothetical
protein encoded next to aca9 in Desulfovibrio carbinolicus that
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completely inactivated the PA14 type I–F CRISPR–Cas system
(AcrIF23), as did its neighbor in a P. aeruginosa prophage
(AcrIF24) (Fig. 5e). These two Acr proteins are homologous to a
number of uncharacterized proteins that are distributed across
Proteobacterial classes (Supplementary Fig. 3 and Supplementary
Data 7). Although no known aca genes form part of the P.
aeruginosa acrIF23–24 locus, the C-terminus of AcrIF24 contains
an HTH domain, implying a possible dual Acr-Aca function
(Fig. 5d and Supplementary Fig. 9). A similar binary role was
previously shown for AcrIIA135 and AcrIIA13–1527, suggesting
that self-regulation by Acrs may be widespread. Our results reveal
two additional I–F inhibitors associated with genes encoding
proteins containing different HTH domains.

Acrs cluster with Anti-RM and other anti-defense genes. A
closer examination of the genomic environments surrounding the
newly identified acr loci revealed several intriguing instances of
additional anti-defense system components (Fig. 6). For example,
an anti-defense gene cluster was identified in a discrete region of a
Klebsiella pneumoniae plasmid, separated from the gene modules
responsible for plasmid housekeeping functions (e.g., replication,
partitioning, and conjugative transfer) (Fig. 6a). Together with an
aca9-acrIF22* Acr locus, we found genes encoding anti-
restriction-modification systems (Anti-RM) (e.g. ArdA and
KlcA36,37) and a plasmid SOS-inhibition (psi) locus involved in
suppressing the deleterious host SOS response elicited by con-
jugative plasmid entry38. Orphan methyltransferase genes were
also co-encoded in this region, suggesting a potential protective
role against host restriction enzymes, as shown previously for
other MGEs39,40. Furthermore, acrIF16 and acrIF17 were found
adjacent to a methyltransferase gene and in close proximity to an
Anti-RM gene (ardA) in a Rahnella plasmid (Fig. 6b(i)).

We then explored whether anti-RM genes are present nearby
previously validated acr genes. Our analyses revealed the
colocalization of the anti-RM gene klcA with previously described
type I and V acrs (e.g., acrIF14 and acrVA1-2) in Moraxella

MGEs (Fig. 6b(ii), b(iii)). Moreover, a gene encoding an H-NS
histone family homolog was adjacent to acr and anti-RM loci in a
Moraxella catarrhalis plasmid (Fig. 6b(iii)). MGE-encoded H-NS-
like proteins are often considered “stealth proteins” that tamper
with host gene expression41,42. Given the H-NS-mediated
silencing of CRISPR–Cas adaptive immunity in E. coli43,44, the
lateral acquisition of H-NS homologs may help MGEs evade
adaptive immunity, as previously proposed for certain
plasmids45,46 and phages47. Finally, we also found close ties
between type II acrs (e.g., AcrIIA9 and AcrIIA7) and anti-RM
components in other types of MGEs, including a conjugative
transposon and a putative phage (Fig. 6b(iv), b(v)).

Collectively, these results suggest that, apart from accumulating
acrs against CRISPR–Cas systems (Figs. 1–5), MGEs compile a
broader arsenal of inhibitors to overcome other host immune
mechanisms. Intriguingly, the resulting collection of inhibitors
appears to mirror the clustered arrangement of defense systems in
their hosts, termed “defense islands”48–50. We found that the gene
neighborhoods of loci encoding Acr and Anti-RM proteins are
typically crowded with other small hypothetical protein-coding
genes of unknown function (Fig. 6). We speculate that these anti-
defense gene clusters may constitute an unrecognized phenom-
enon in diverse MGEs, potentially enriched with new genes that
antagonize diverse defense systems51.

Discussion
Following an aca-based guilt-by-association search, 11 Acr
families and a new Aca family were discovered across chromo-
somal and extrachromosomal MGEs of mostly Enterobacter-
iaceae (Figs. 1b, 5d). These findings ascribe function to a dozen
gene families that were previously only hypothetical and reveals
that the diverse MGEs that carry them are likely encountering
and evading functional CRISPR immunity in situ. The Acr pro-
teins identified share no sequence similarity with known Acrs,
increasing the collection of distinct subtype I–F Acrs to 24 (from
14) and I–E CRISPR–Cas inhibitors to 10 (from 7). Many
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genomes analyzed showed instances of self-targeting, where
integrated MGEs carrying the acr operons had regions with
perfect identity to host-derived CRISPR spacers (Fig. 1b, c). One
self-targeting spacer was even predicted to target an acr gene
(acrIF16), encoded by a Pectobacterium parmentieri prophage
(Fig. 1c, bottom and Supplementary Data 2). We only sampled a
fraction of genes associated with aca5 and aca9 (Figs. 1a, 5c),
suggesting that many more acrs linked to these marker genes
await discovery.

Loci encoding Acrs frequently contain more than one acr
gene9,12,13,23. Here we observed loci where as many as four dis-
tinct acrs are “stacked” upstream of aca5 (Fig. 1). It is unclear
what fitness benefits are associated with such locus organizations
and whether functional redundancy or cooperation between the
different Acrs occurs. Given the fast MGE-host co-evolutionary

arms race, carrying multiple acrs likely serves as a safeguard
against Cas mutational escape or subtype diversity. Alternatively,
multiple Acr proteins could provide MGEs with “division of
labor” potential where different Acr proteins are used during
distinct stages of the MGE life cycle, or contribute to a more
robust inhibitory effect by blocking the immune pathway at dif-
ferent stages52.

Former mechanistic characterizations of Acr proteins have
revealed a remarkable diversity of inhibitory functions17. Inter-
estingly, relatively low MWs and pIs have been reported for Acrs
inhibiting CRISPR–Cas systems via DNA mimicry53,54, suggest-
ing a putative link between low MW/pI values and mechanistic
inhibitory function. Given the small size and negative charges of
AcrIF18* and AcrIF15 (Supplementary Fig. 6), and their CRISPRi
inhibitory activities (Fig. 4b), it is possible that they function as
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DNA mimics—analogous to AcrIF255, AcrIF1056, AcrIIA253,54

and AcrIIA457. DNA-recognition domains in Cas proteins (and
components of other bacterial defense systems) are functionally
constrained, making them desirable targets for broad spectrum
inhibition. A great example of how MGEs exploit this “Achilles
heel” is phage protein Ocr, a DNA mimic that provides protec-
tion from both type I RM systems and BREX (Bacteriophage
exclusion systems)58. While DNA mimicry could help explain the
broad inhibitory activity of AcrIF18*, further experiments are
required to ascertain such functionality.

Although the Acr families we describe here are predominantly
detected on prophage elements (Figs. 2d, 3, 5c), many are also
carried by other types of MGEs, such as conjugative plasmids and
ICEs (Figs. 2d, 5c). Our results support the notion that Acrs play
an important role in facilitating the horizontal transfer of diverse
MGE-encoded traits, such as plasmid-encoded antibiotic resis-
tance determinants (Fig. 6a and Supplementary Data 8)16. Con-
sistent with this idea, we recently reported a positive association
of acr genes and acquired antibiotic resistance genes in P. aeru-
ginosa genomes59. Interestingly, the taxonomically broadly dis-
tributed AcrIF17 is particularly enriched on conjugative plasmids
(Fig. 2d). Because conjugative elements often exhibit broader
transfer host ranges than phages60,61 these results may reveal a
relationship between the MGE origin of acrs, their phylogenetic
distribution and inhibitory spectrum.

Consistent with previous work, we show that Acrs tend to
inhibit the specific CRISPR–Cas system(s) present in the hosts of
the MGEs carrying them, although the inhibition spectrum of

certain Acrs is occasionally broader12,18,62,63. These data indicate
the challenge of inferring inhibitory activity a priori and high-
lights the necessity to interrogate acr function experimentally in a
case by case manner using a panel of CRISPR–Cas systems.

Because the dynamics of gene flow within microbial commu-
nities are governed by the interactions between MGEs and their
hosts, shedding light on the defense/anti-defense arms race is
integral for understanding the ecology and evolution of bacteria.
However, prokaryotes possess an extraordinary variety of defense
mechanisms and identifying uncharted immune systems has
proved challenging. Previous work has shown that defense sys-
tems often co-localize within defense islands in bacterial gen-
omes49, thus allowing the identification of undiscovered immune
systems5,50,64. Here, we find that acr loci often cluster with
antagonists of other host defense functions (e.g., anti-RM) and
hypothesize that MGEs organize their counter defense strategies
in “anti-defense islands” (Fig. 6). In support of these observations,
a previously undescribed immune evasion strategy (a double-
strand DNA break repair system) and two new anti-RM genes
were found located immediately adjacent to each other across
several conjugative MGEs65. We anticipate that this genetic co-
occurrence will be useful for the discovery of novel anti-defense
systems.

Methods
Bioinformatic searches and phylogenetic analyses of Aca and Acr proteins.
Protein sequences of Aca5 homologs were identified through 4 iterations of PSI-
BLAST with default search parameters against the non-redundant protein database
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(NCBI-NR) using the Pectobacterium Aca5 WP_039494319.1 sequence as a query
(Supplementary Data 9). Only hits with >70% coverage and e-value <10−8 were
included in the generation of the position-specific scoring matrix (PSSM). An
HMM model of Aca5 was also built using PSI-BLAST hits (three iterations; query
cover: >90% and identity >55%). Acr candidates were identified following a pre-
viously described guilt-by-association approach18. Briefly, hypothetical ORFs
upstream genes encoding Aca5 homologs were found through a combination of
bioinformatic searches using PSI-BLAST (up to three iterations, only considering
hits with e-values <10−4 for PSSM generation) and hmmsearch (HMMER v3.0; e-
value cutoff 0.05; the script was modified to extract upstream and downstream
nucleotide sequences for each hit).

Multiple alignments of the identified Aca and Acr proteins were performed with
the MUSCLE software66. Alignment sites with gaps were trimmed from the
alignment. Maximum Likelihood phylogenetic trees were constructed using
MEGA67 (500 bootstraps and standard settings) and displayed using iTOL68.

MGE/prophage context, CRISPR–Cas and self-targeting analyses. The geno-
mic contexts (<25 Kb upstream and downstream) of all identified acr homologs
were scanned manually in search for prophage, plasmid, and ICE signature
protein-coding genes. The MGE type and corresponding signature gene(s) used to
determine the acr origin are displayed in Supplementary Data 4. In the absence of
annotated genes, PSI-BLAST searches (70% coverage, <10−4 e-value) were per-
formed with genes neighboring the acrs in an attempt to find homology to genes of
known function that could provide situational insights. CRISPRCasFinder69 and
CRISPRCasTyper (https://typer.crispr.dk/)70 were employed to determine the
presence and sequence integrity of the CRISPR–Cas systems in the genomes of the
bacterial hosts encoding the selected acr candidates and to extract the corre-
sponding CRISPR spacers (Supplementary Data 1). Self-targeting analyses were
performed using CRISPRTarget71, STSS15, and CRISPRminer(v2)72 by blasting the
spacer contents against the host genome assemblies (Supplementary Data 2).
Prophage regions were identified and annotated via PHASTER73 and the position
of the acr loci and self-targets were compared to the predicted prophage regions
(Supplementary Data 2).

CRISPR–Cas sequence identity comparisons. The protein sequences of the Cas
orthologs of the model CRISPR–Cas systems tested and the endogenous
CRISPR–Cas systems (hosts from which the selected acrs originate) were aligned
using BLASTp. An average score of the percentage sequence identity between
systems was calculated (Supplementary Data 3). Only the proteins involved in the
interference complex were taken into consideration in this analysis (i.e., excluding
the adaptation module: Cas1 and Cas2 in I–E systems and Cas1 in I–F systems).

Bacterial strains, phages, and growth conditions. All strains and phages used in
this study are listed in Supplementary Tables 1 and 2. Pseudomonas aeruginosa
strains (PA14, PAO1) and Escherichia coli strains (Mach-1) were routinely grown
at 37 °C in Lysogeny Broth (LB) (10 g L−1 tryptone, 5 g L−1 yeast extract, and 10 g
L−1 NaCl). Pectobacterium atrosepticum SCRI1043 and Serratia sp. ATCC39006
were grown at 25 °C and 30 °C, respectively in LB (10 g L−1 tryptone, 5 g L−1 yeast
extract, and 5 g L−1 NaCl). All solid plate media were supplemented with 1.5% w/v
agar. Media were supplemented with antibiotics to maintain the pHERD30T
plasmid (and derivatives): 30 µg mL−1 for Pectobacterium atrosepticum SCRI1043
and Serratia sp. ATCC39006, 15 µg mL−1 gentamicin for E. coli, and 50 µg mL−1

gentamicin for P. aeruginosa. When appropriate, the following inducer con-
centrations were used: 0.1–0.3% w/v arabinose and 0.1 mM isopropyl β-D-1-
thiogalactopyranoside (IPTG). During heat shock transformations, E. coli was
recovered in SOC media (20 g tryptone, 5 g yeast extract, 10 mM NaCl, 2.5 mM
KCl, 10 mM MgCl2, 10 mM, MgSO4, and 20 mM glucose in 1 L dH2O).

Pseudomonas phages DMS3, DMS3m, and JBD30 derivatives were propagated
on PA14 ΔCRISPR or PAO1 WT. Pectobacterium phage ϕTE74 and Serratia phage
JS2675 were propagated on P. atrosepticum SCRI1043 (WT)76 and Serratia sp.
ATCC39006 LacA strains77,78, respectively. Pseudomonas phages were stored at
4 °C in SM buffer (100 mM NaCl, 8 mM Mg2SO4, 50 mM Tris-HCl, pH 7.5, 0.01%
w/v gelatin) over chloroform. Pectobacterium and Serratia phages were stored at
4 °C in phage buffer (10 mM Tris-HCl pH 7.4, 10 mM MgSO4 and 0.01% w/v
gelatin) over chloroform.

Cloning of candidate anti-CRISPR genes. Candidate acr genes identified in the
aca5-based guilt-by-association search (Supplementary Data 1) were synthesized as
gene fragments (Twist Biosciences) and cloned into the NcoI and HindIII sites of
the pHERD30T shuttle vector using Gibson Assembly (New England Biolabs). The
plasmid constructs were propagated in commercial E. coli Mach-1 competent cells
(Invitrogen, Thermo Fisher Scientific) upon transformation, following the manu-
facturer’s recommendations. AcrIE8.1, AcrIF17.2, and AcrIF18.2* were synthesized
as gBlocks (IDT) and ligated into the NcoI and HindIII sites of the pHERD30T
shuttle vector and transformed into E. coli DH5α competent cells. The integrity of
the cloned fragments were verified via Sanger sequencing using primers outside of
the multiple cloning site (Supplementary Table 3). A list of the plasmids and
oligonucleotides used in this study can be found in Supplementary Table 3 and 4.

Preparation of P. aeruginosa, P. atrosepticum, and Serratia sp.
ATCC39006 strains for acr functional testing. The pHERD30T plasmids with
different candidate anti-CRISPRs were electroporated into the different P. aeru-
ginosa strains. Briefly, overnight cultures were washed twice in 300 mM sucrose
and concentrated ten-fold. Competent cells were then transformed with 50–100 ng
plasmid and incubated without plasmid selection in LB broth for 1 h at 37 °C
before they were grown overnight at 37 °C on LB agar plates with plasmid selection.
For the transformation of these plasmids in P. atrosepticum and Serratia
ATCC39006, they were first transformed into the chemical competent E. coli ST18
and cells were plated onto LB agar plates with 50 µg mL−1 5-aminolevulinic acid
(ALA). Then, the donor ST18 cells were conjugated with recipient P. atrosepticum
(PCF188)18 and Serratia ATCC39006 PCF524 (I–E) and PCF525 (I–F). The
positive clones were selected by streaking onto LB agar plates containing 30 µg
mL−1 gentamicin. The arabinose-inducible promoter in pHERD30T was used to
drive the expression of the candidate acr genes.

P. aeruginosa phage immunity assays. The functionality of the identified acr
candidate genes was assessed through phage spotting assays or efficiency of pla-
quing (EOP). These tests evaluated the replication of CRISPR-targeted phages
DMS3m (I–F) and JBD30 (I–C and I–E) in bacterial lawns relative to the empty
vector control. Efficiency of plaquing (EOP) was calculated by dividing the number
of plaque-forming units (pfus) formed on a phage-targeting strain by the number
of pfus formed on a non-targeting strain: ΔCRISPR strain (I–F and I–E) or the
absence of CRISPR expression inducer (I–C). Additional controls included infec-
tion in the presence of an already validated Acr (i.e., AcrIE4/F7, AcrIF11, or
AcrIC1). Each pfu calculation was performed in three biological replicates and
expressed as the mean EOP ± SD (error bars). Briefly, 200 µL of bacterial overnight
cultures were mixed with 10 µL of ten-fold phage serial dilutions and combined
with 4 mL of molten top agar (0.7%) supplemented with 10 mM MgSO4. The mix
was poured onto LB agar (1.5%) plates containing 50 µg mL−1 gentamicin and
10 mMMgSO4. Additionally, plates were supplemented with 1 mM IPTG and 0.3%
w/v arabinose for experiments using the PAO1 strain (I–C CRISPR–Cas) and with
0.3% w/v arabinose when using the PA4386 strain (I–E CRISPR–Cas), and
PA14 strain (I–F CRISPR–Cas). Plates were incubated overnight at 30 °C and
phage plaque-forming units (pfu) were calculated. In phage spotting experiments,
phage dilutions 3.5 µL of ten-fold serial dilutions of the phage lysates were spotted
onto the plate surface containing the bacterial lawn in the top agar. Plate images
were obtained using Gel Doc EZ Gel Documentation System (BioRad) and Image
Lab (BioRad) software.

Anti-CRISPR Assay in P. atrosepticum and Serratia sp. ATCC39006. PCF188,
PCF524, and PCF525 were transformed with plasmids expressing the different Acrs
and overnight cultures were used to pour top agar plates (100 µL culture added to
4 mL LB with 0.35% agar) onto LB agar plates (containing 30 µg mL−1 gentamicin
and 0.1% w/v arabinose). Due to the toxic effects on Serratia cells, AcrIF9 (positive
control for inhibition) was tested in the absence of arabinose. Twelve-fold serial
dilutions of phage ϕTE and JS26 lysates were made in phage buffer, and 15 µL was
spotted on the dried top agar plates. Then, the plates were incubated overnight at
25 °C for Pectobacterium and 30 °C for Serratia. The efficiency of plaquing (EOP)
was determined by calculating the pfus per mL of the Pectobacterium 3 × TE and
Serratia cells (expressing the different Acrs) divided by the pfus of the corre-
sponding wild-type with an empty vector pHERD30T control. Three biological
replicates were done for each of the experiments (Source data file).

Construction of recombinant acr phages. DMS3m phage derivatives encoding
AcrIF15, AcrIF18*, AcrIF16, and AcrIF17 were constructed. Briefly, a recombi-
nation plasmid with homology to the DMS3m acr locus78 was used to clone the
Acr genes of interest upstream of aca1 by Gibson Assembly (New England Bio-
labs). The resulting vectors were used to transform PA14 ΔCRISPR and the strains
were infected with WT DMS3m::gent35 cassette. Phages were recovered after full
plate infections in selection plates containing 50 µgm−1 L gentamicin and the
resultant phage lysates were used for full plate infections in plates without selection.
Recombinant phages were sequentially passaged through PA14 ΔCRISPR 3 times
to purge away potential non-recombinant phage carryover. The integrity of the
cloned Acr genes were verified by Sanger sequencing. Phages were stored in SM
buffer at 4 °C.

Generation of recombinant Acr phage PA14 (dCas3) lysogens. 200 µL of
PA14dCas3 overnight culture was added to 4 mL of 0.7% LB top agar and spread
on 1.5% LB agar plates supplemented with 10 mMMgSO4. 3 µL of the recombinant
acr phages were spotted on the top agar bacterial lawns and plates were incubated
at 30 °C overnight. Following incubation, bacterial survivors (lysogens which
undergo superinfection exclusion or are surface receptor mutants) within the
plaques were isolated and spread on 1.5% LB agar plates. Single colonies were
assayed for phage resistance by streaking across a line of phage lysate, compared to
a sensitive WT PA14 control. Prophages were confirmed by sequencing, checking
for resistance to superinfection by the same phage, and assessing the spontaneous
production of phage from the lysogenic strain (supernatant was titered on PA14
ΔCRISPR).
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CRISPRi-based pyocyanin repression assay in P. aeruginosa. The pyocyanin
repression assay was carried out using PA14dCas3 lysogens harboring the con-
structed DMS3m prophages expressing either AcrIF15, AcrIF16, AcrIF16 or
AcrIF18*. The different were transformed with pHERD30T::crRNAphzM, a vector
expressing a crRNA designed to target the promoter of phzM, a chromosomal gene
in PA14 which is involved in the production of the pyocyanin (blue-green pig-
ment)34. In the presence of crRNA phzM CRISPRi repression leads to a color
change in the culture medium, from green to yellow. The different lysogens were
additionally transformed with an empty vector (pHERD30T), serving as a non-
targeting control (remains green).

Cultures of three independent lysogens were grown overnight in LB supplemented
with gentamicin (50 µgmL−1) for vector retention and 0.3% arabinose to induce
crRNA expression. Pyocyanin was extracted from the overnight cultures and
quantified by measuring absorbance at 520 nm34. Representative pictures of the color
changes are also displayed (Supplementary Fig. 7).

Software and statistical analysis. Numerical data were analyzed and plotted with
GraphPad Prism 6.0 Software. HHPred searches were carried out for the prediction
of protein domains (e.g., HTH). Protein secondary structure predictions were
carried out by JPred479 and Phyre280. Detection of antibiotic resistance genes was
performed via BLAST against the Comprehensive Antibiotic Resistance Database
(CARD)81 (Supplementary Data 8). A list of the Software is provided in Supple-
mentary Table 5.

Statistics and reproducibility. Statistical parameters are specified in the figure
legends. All experiments were repeated at least two times independently with
similar results.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data used for generating the Figures and the Supplementary Figures presented in this
study are available in this article. Links to public datasets used: Comprehensive Antibiotic
Resistance Database (CARD); NCBI-NR; IMG/VR. Source data are provided with
this paper.
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